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Rapid, energy-intensive and coal-fuelled economic growth in 
China1 has substantially degraded air quality in the country2, and 
the resulting impacts on human health have been a major source 

of concern for both the government and people of China. According 
to the Global Burden of Disease (GBD) study, population-weighted 
annual mean PM2.5 concentrations in China rose from 48.5 to 58.4 µg 
m−3 between 1990 and 2015, corresponding to a similar increase in 
annual PM2.5-related deaths from 0.95 to 1.11 million (ref. 3).

In response to mounting public health risks, China has imple-
mented a series of policies aimed at improving energy efficiency and 
decreasing energy-related pollution. Beginning in the country’s 11th 
five-year plan (2005–2010), the government set a goal of reducing 
energy intensity (energy per unit gross domestic product (GDP)) by 
20% and reducing SO2 emissions by 10% between 2005 and 20104,5. 
The 12th five-year plan (2010–2015) ramped up the ambition of these 
goals, targeting a 16% reduction in energy intensity and 8% and 10% 
of reductions in emissions of SO2 and NOx, which are major precur-
sors of PM2.5 pollution, respectively, by 20156,7. Furthermore, in 2013, 
China implemented the first phase of the Air Pollution Prevention 
and Control Action Plan (hereinafter referred to as the ‘Action Plan’) 
to tackle the nationwide air pollution issue, with a series of emission 
control measures in different sectors8. Specifically, PM2.5 concentra-
tions over key regions such as Beijing and its surrounding area were 
required to decline by 15–25% before 20178–10.

However, although prior studies have assessed specific benefits 
of some of China’s environmental and public health policies9–13, it 
remains unclear how the effects of such policies have interacted 
with contemporaneous trends in the country’s economic develop-
ment, weather patterns and demographic characteristics, which may  

compete with or reinforce one another to determine the country’s air 
pollution emissions, concentrations of PM2.5 pollution and related 
mortality. Here we use a detailed sector-specific inventory of air pol-
lutant emissions (the Multi-resolution Emission Inventory of China 
(MEIC))10,14, index decomposition analysis15, a chemical transport 
model (the Community Multi-scale Air Quality (CMAQ))16 and 
the newly developed Global Exposure Mortality Model (GEMM)17 
to systematically analyse and compare the importance of eight dif-
ferent factors affecting premature deaths due to PM2.5 pollution in 
China over the period 2002–2017: (1) economic growth (changes 
in GDP), (2) end-of-pipe control policy (changes in emissions per 
unit of consumed energy), (3) energy-climate policy (changes in 
both energy per unit GDP and the fuel mix of the energy sector), 
(4) economic structure (changes in the fractional contribution of 
GDP by different industry sectors), (5) interannual meteorological 
variation, (6) population growth, (7) population ageing (changes 
in the age structure of the population) and (8) improved health 
care (changes in baseline mortality rates independent of expo-
sure to PM2.5) (Extended Data Fig. 1). By coupling these data and 
models, we can consistently assess the relative influence of these 
factors on both pollution concentrations (“exposure” factors 1–5) 
and PM2.5-related deaths (including the exposure factors 1–5 and 
“vulnerability” factors 6–8)3 in China over the period 2002–2017. 
Details of our analytic approach are described in Methods and 
Supplementary Information.

Trends in socioeconomic and vulnerability factors
Figure 1 shows the trends in the main socioeconomic (or exposure) 
and vulnerability factors in China. Over 2002–2017, Chinese GDP 
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grew at a mean annual rate of 9.4%, from 12.2 to 46.9 trillion CNY 
(in 2002 prices; Fig. 1a), with the contribution of tertiary industries 
increasing from 42.2% to 51.9% (Fig. 1b)1. Growth in the economy 
is likely to increase air pollution emissions, which can be partially 
offset by changes in economic structure. Meanwhile, China’s total 
annual energy consumption grew at a mean annual rate of 6.7%, 
from 1.7 to 4.5 billion ton coal equivalent (btce) (Fig. 1c), to which 
the contribution from coal declined from 68.5% to 60.4%1, indi-
cating gains in energy efficiency (as compared with the growth of 
GDP) and efforts in reducing the share of coal. Rising air pollut-
ant emissions triggered the implementation of end-of-pipe control  

policies. Taking primary PM2.5 as an example, the removal rate 
surged from 67% to 95% during 2002–2017, demonstrating the 
efficacy of end-of-pipe control policies (Fig. 1d)10. Over the same 
period, the country’s population increased at a mean annual rate 
of 0.53%, from 1.28 to 1.39 billion1, toward an ageing structure 
(Fig. 1e). Meanwhile, the age-standardized mortality rate (that is, 
weighted average of age-specific mortality rates based on the fixed 
age structure of a standard population) of non-communicable 
diseases and lower respiratory infections (two disease endpoints 
representing the mortality burden of PM2.5 exposure17) in China 
reduced from 72 to 56 deaths per 10,000 people per year, at a  
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Fig. 1 | Trends in factors affecting air pollution emissions, exposure and vulnerability in China 2002–2017. a, National GDP at current and 2002 prices. 
b, Contribution of primary, secondary and tertiary industries to Chinese total GDP. c, National energy consumption and fractions of different fuels. d, 
Trends in actual and unabated primary PM2.5 emissions in China. e, National population and fractions of different age groups. f, Age-standardized mortality 
rates (that is, weighted average of age-specific mortality rates based on the fixed age structure from a standard population) attributable to the sum of 
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continuously slowing decreasing pace (Fig. 1f)18, reflecting improved 
health care in China including better medical services and healthier 
human behaviours. Population will be more vulnerable to air pollu-
tion exposure when the ageing population outweighs the decreased 
age-standardized baseline mortality rate. The combined effects of 
the described factors drive the trend of China’s air pollution emis-
sions, exposure and population vulnerability.

Drivers of air pollutant emissions
Figure 2 shows emission trends of SO2, NOx and PM2.5 in China 
during 2002–2017 (black curves) and the relative influence of the 
four socioeconomic drivers on these emissions. During the entire 
15-year period, economic growth is the main driver of emission 
increase (red curves), while end-of-pipe control policies (that is, 
policies that mandated end-of-pipe control technologies and/or 
promoted low-emission technologies; blue curves) have effectively 

restrained comparable emission growth. Energy-climate policies 
(that is, those primarily aimed at altering the fuel mix of the energy 
sector and improving energy efficiency; green curves) and changes 
in economic structure (orange curves) also helped reduce emis-
sions, but with relatively limited effects in earlier years and increas-
ing contributions at the end of the time period.

Emissions of all three pollutants increased from 2002 to 2007 (by 
38.9%, 70.4% and 11.1%, respectively), driven primarily by rapid 
economic growth and relatively weak control policies. Although 
increases in emissions of SO2 and PM2.5 were partially restrained 
by end-of-pipe control policies19,20, NOx emissions increased rap-
idly because effective control measures were absent during that 
period (Extended Data Table 1). The effects of energy-climate poli-
cies were also limited as the share of energy from coal increased 
(Fig. 1c). Between 2007 and 2012, those trends in economic growth, 
end-of-pipe control policy and energy-climate policy continued, 
but total emissions of SO2 and PM2.5 decreased by 11.0% and 10.3%, 
respectively, primarily benefitting from more effective emission 
reduction efforts (that is, end-of-pipe control policy). Also underly-
ing this reversal were changes in economic structure, which became 
a downward influence on emissions (Fig. 2a,c; also see changing 
shares of emissions from major industry sectors in Extended Data 
Fig. 2). Although NOx-specific policies were implemented in 2010 
(with a targeted national emission cap; Extended Data Tables 1 and 
2), limited deployment of control technologies before 2012 led to a 
26.5% increase in NOx emissions between 2007 and 2012 (Extended 
Data Tables 1 and 2)10,20. In the most recent period (2012–2017), 
even more stringent end-of-pipe control policies (part of the Action 
Plan) were implemented to mitigate severe air pollution (Extended 
Data Table 1)9,10,21. At the same time, both energy-climate poli-
cies and shifts in the country’s economic structure contributed to 
more evident decreases in emissions of all three pollutants than in 
the previous sub-periods (Extended Data Table 1)10. Combining all 
the policy factors together, large net reductions were obtained in 
emissions of SO2, primary PM2.5 and NOx, with reduction ratios of 
63.2%, 35.8% and 24.8%, respectively, during 2012–2017 (Fig. 2; 
Extended Data Table 1)9,10.

Drivers of PM2.5 exposure and related deaths
As a consequence of emission changes, national population-weighted 
annual mean PM2.5 concentrations increased from 51.5 µg m−3 
(95% CI 46.6–61.7 µg m−3) to 63.6 µg m−3 (95% CI 57.8–76.0 µg 
m−3) between 2002 and 2007, then declined to 42.1 µg m−3 (95% CI 
38.3–50.3 µg m−3) in 2017 (Fig. 3a, black bars). Trends in premature 
deaths attributable to PM2.5 exposure during the same period are 
presented in Fig. 3b. These trends in PM2.5 exposure and premature 
deaths largely mirror the above-discussed trends in emissions, with 
generally consistent influences from each of the socioeconomic 
factors (Fig. 3). A noteworthy exception to this consistency is eco-
nomic structure; although changes in the proportions of industrial 
sectors tended to increase emissions during 2002–2007, they none-
theless reduced average PM2.5 exposure and related deaths because 
of geographical differences in the industries and exposed popula-
tion (Extended Data Fig. 3).

Since 2007, strengthened end-of-pipe control and energy-climate 
policies have offset effects of economic growth and led to a reversing 
trend in PM2.5 exposure. The largest reductions in PM2.5 exposure 
and related deaths were achieved by the combined contributions 
of strict end-of-pipe control policies, energy-climate policies 
and policy-mandated adjustment of economic structure between 
2012–2017, when the toughest-ever clean air actions in China (that 
is, the Action Plan) were implemented9. As a consequence, the net 
effects of changes in economic and policy factors (together labelled 
“Exposure”) was to increase air pollution-related deaths by 221,000 
(95% CI 172,000–267,000) between 2002 and 2007, then decrease 
deaths by 48,000 (95% CI 36,000–59,000) between 2007 and 2012, 
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before decreasing deaths by 440,000 (95% CI 351,000–513,000) in 
the final five-year period of 2012–2017 (Fig. 3b).

Besides varying pollutant emissions, interannual changes in 
meteorological conditions, natural emission sources and popula-
tion distribution (for example, due to migration and varying popu-
lation growth rates in different regions) might have affected PM2.5 
exposure. Although meteorological conditions were favourable in 
the winter of 2012 and unfavourable in the winter of 2007 and 2017 
compared with the corresponding start year of each sub-period 
(Extended Data Fig. 4), this had a relatively small effect on pollu-
tion exposure and deaths (Fig. 3, dark-blue bars). Natural emission 
sources, including windblown dust and biogenic emissions, make a 
relatively small contribution to PM2.5-related deaths and show insig-
nificant or marginal trends during the study period, thus not being 
major drivers of PM2.5 exposure and death trends over China22–25 
during the study period. However, their relative influence will con-
tinue to grow as China tackles anthropogenic emissions, and their 

impacts should be considered especially for the cost–benefit assess-
ment of future emission abatement policies. Changes in the popu-
lation distribution had very little effect on population-weighted 
annual mean PM2.5 concentrations (less than 0.3 µg m−3 for each 
5-year period) and were thus neglected (Extended Data Table 3).

PM2.5-related deaths were also affected by changes in popula-
tion size, population age distribution and health care (together 
labelled “Vulnerability” in Fig. 3b) in China during 2002–2017. 
Increases in mortality due to ageing of the Chinese population  
(Fig. 3b, light-green bars) were comparable in size to the increases 
and decreases due to economic growth and end-of-pipe control 
policies, respectively (Fig. 3b, red and blue bars). Population vul-
nerability remained stable during 2002–2007 because the improved 
health care in China largely cancelled out the adverse effects of a 
growing and ageing population. However, health care improve-
ments were much more limited over the latter two periods,  
leading to a continuously increased vulnerability during 2007–2017 
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(Figs. 1f and 3b). On net, we estimate that changes in population 
size, age and health care increased mortality related to air pollution 
in China throughout the whole period (Fig. 3b), which is consistent 
with previous studies3.

Taking the combined influence of all factors, we estimate that 
premature deaths attributable to PM2.5 exposure increased from 
1.73 million people per year in 2002 (95% CI 1.46–2.03 million) to 
2.26 million in 2012 (95% CI 1.91 to 2.64 million) and then slightly 
decreased to 2.12 (95% CI 1.79–2.52) million in 2017 (Fig. 3b, black 
bars). The estimated premature deaths in 2017 are comparable to 
other studies using the same GEMM model (for example, 2.42–
2.47 million in 201517,26). Our results show that economic growth 
in China was the primary driver of pollution emissions, poor air 
quality and related mortality between 2002 and 2017, but that the 
ageing of the Chinese population also substantially increased pre-
mature deaths due to air pollution. End-of-pipe control policies 
have been remarkably effective in countering rising emissions and 
related deaths over the same time period. However, energy-climate 
policies and changes in China’s economic structure have become 
increasingly important over time. Indeed, the largest decreases in 
PM2.5-related deaths over the period 2012–2017 were the result of 
coordinated policy efforts to control pollution, shift energy sources 
and adjust the country’s economic structure9.

The emerging role of energy-climate policy
Our findings are instructive for future policy-making. Although 
PM2.5 concentrations decreased during 2002–2017, the national 
population-weighted annual mean PM2.5 concentrations in 2017 
(that is, 42.1 µg m−3) still exceeds the air quality guideline of 10 µg 
m−3 proposed by the World Health Organization. Based on the com-
bined effects of the three vulnerability factors (Fig. 3b), the Chinese 
population is increasingly vulnerable to air pollution. More than 
three decades of the “one-child” policy along with improvements 
in health care have contributed to low birth rates and longer life 
expectancy in China, resulting in an ageing population (Fig. 1e). 
Population growth is slowing and is thus unlikely to be a major 
driver of air pollution exposure in the future27. However, population 
ageing will continue to exacerbate air pollution deaths as the frac-
tion of older people in China rises to that of other developed coun-
tries such as Japan and the United States27. Given that the improved 
health care failed to offset the adverse impacts from growing and 
ageing population during the investigated period (Figs. 1f and 3b), 
future vulnerability may continue to be a factor increasing prema-
ture mortality in China3,18, which requires further strengthened 
emission reduction measures to protect public health.

Meanwhile, although China’s economic growth has slowed in 
recent years, steady and robust growth is anticipated28. Given the 
effectiveness of end-of-pipe controls, a major question is whether 
such policies can continue to reduce emissions in the future. 
Substantial emission reductions during 2012–2017 mainly benefit-
ted from strict end-of-pipe control measures by the implementation 
of the Action Plan. As of 2017, air pollution control technologies 
installed in China have achieved sector-average removal efficien-
cies of 76% and 95% for SO2 and PM2.5 emissions, respectively 
(see, for example, Fig. 1d and Extended Data Fig. 5). Specifically, 
the implementation of ultra-low emission standards for coal-fired 
power plants has achieved 93% and 98% removal efficiencies for 
SO2 and PM2.5 emissions in the power sector, respectively10. Future 
opportunities for controlling SO2 and PM2.5 emissions may still exist 
in small industries (for example, brick production, casting indus-
try, etc.) and residential sectors, where it is difficult to implement 
highly efficient end-of-pipe control facilities. On the other hand, 
the average removal efficiency of NOx emissions remained quite low 
(that is, 23%; Extended Data Fig. 5), and emissions of non-methane 
volatile organic compounds (NMVOCs) and NH3 were nearly 
uncontrolled until 20179,10. Therefore, the major emission reduction 

potentials by end-of-pipe control policies are for NOx, NMVOCs 
and NH3 emissions. It is worth noting that the absence of NMVOC 
control measures may have contributed to the increase in O3 pollu-
tion in China under the VOC-limited condition during the past29. 
In the future, tailored control measures targeting emissions of both 
NOx and NMVOCs would be beneficial for controlling PM2.5 and 
O3 pollution at the same time30. In particular, the limited effect of 
end-of-pipe control policies on NOx abatement to date has been 
largely due to the high emissions from industrial combustion facili-
ties and diesel trucks10, which require stricter emission standards. 
Reducing emissions of NMVOCs and NH3 is much more difficult 
due to the majority of small and scattered sources and low removal 
efficiency of current control technologies. All of this suggests that 
end-of-pipe control policies may face challenges in avoiding air pol-
lution deaths in the future.

Thus, although energy-climate policies and changes in economic 
structure made relatively modest contributions before 2017, the 
increasing contribution of energy policies and shifting economic 
structure during 2012–2017 suggests that such energy-climate poli-
cies may be critical levers to protect public health in the future. Coal 
still dominates the Chinese energy sector, supplying 68.5% and 
60.4% of energy in 2012 and 2017. But non-fossil energy includ-
ing hydroelectric, nuclear, solar and wind power grew steadily from 
2002 to 2017 (from 8.2% to 13.8% of total primary energy consump-
tion; Fig. 1c), and as part of the Paris Agreement, China has com-
mitted to obtaining 20% of its energy from non-fossil sources by 
203031, More ambitious efforts to decarbonize the Chinese energy 
sector and continue the shift away from coal could play an impor-
tant role in improving air quality in the country. Similarly, the ongo-
ing transition of the Chinese economy away from energy-intensive 
manufacturing and towards high-value-added assembly and service 
sectors may also greatly reduce air pollutant emissions and related 
deaths32. Indeed, the percentage of the country’s GDP related to 
manufacturing has decreased in recent years, from 45.4% in 2012 
to 40.5% in 20171.

Having quantified the major drivers of Chinese air pollution and 
related deaths during the past, we see signs that what has worked to 
reduce emissions and mortality in the past may be less effective in 
the future. Strengthening energy-climate policy can directly benefit 
air quality and public health in China. Climate change mitigation 
could bring wider health benefits beyond air quality improvement (for 
example, reducing extreme weather events, preventing disease trans-
mission, protecting food supply, etc.)33–37, and emerging and active cli-
mate actions may allow China to protect public health more effectively.
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Methods
Integrated modelling framework. Models and data from multiple scientific 
disciplines and sources are integrated in this study to quantify the contributions 
of major drivers to the trend in premature deaths related to PM2.5 pollution in 
China from 2002 to 2017 (Extended Data Fig. 1). The trends in PM2.5-related 
deaths are decomposed into effects from eight drivers: (1) economic growth, (2) 
end-of-pipe control policies, (3) energy-climate policies, (4) economic  
structure, (5) meteorological variation, (6) population growth, (7) population 
ageing and (8) improved health care. The first five are factors related to  
PM2.5 exposure levels (“exposure” factors), whereas the last three are factors 
related to the vulnerability of the population (“vulnerability” factors). The 
influences of each driver are estimated over three sub-periods: 2002–2007, 
2007–2012 and 2012–2017. Four approaches are integrated, including the MEIC 
model, the logarithmic mean Divisia index (LMDI) approach, the CMAQ 
model and the exposure response functions from the GEMM model. Datasets 
used in this study include detailed bottom-up emission inventory of major 
air pollutants and the underlying statistics obtained from the MEIC model; 
socioeconomic statistics including sectoral GDP (that is, value added), price 
index and population from official national and provincial statistical yearbooks 
and datasets;1,38–42 and national public health statistics including population 
structure and baseline mortality rate from the GBD study18. A full version of the 
methods applied with a detailed description of the models and datasets used in 
this study is provided in Supplementary Information, while a condensed version 
is provided below.

Anthropogenic emission inventory of major air pollutants. Anthropogenic 
emissions of SO2, NOx, CO, NH3, primary PM2.5, primary PM10 and NMVOCs 
are obtained from the MEIC model (http://www.meicmodel.org/)10,14 to feed 
the emission decomposition and air quality simulations. The MEIC model 
is a bottom-up emission inventory model that provides detailed estimates of 
anthropogenic emissions of major air pollutants from more than 700 sources, 
covering both energy consumption and non-energy processes, over 31  
provinces in Mainland China. Emissions of each air pollutant were calculated  
using the equation

Ep =

∑

s

∑

f
As,f × EFp,s,f × (1 − ηp,s,f) (1)

where p, s and f represent the air pollutant species, emitting sector, and fuel 
or product type, respectively. A is the activity rate, such as fuel consumption 
or material production. EF represents the unabated emission factor, which is 
emissions per unit fuel consumed or product produced. η represents the  
removal efficiency of end-of-pipe control technologies with typical values 
of η summarized in Supplementary Table 1. Details of the technology and 
process-based emission estimation approach, source classifications,  
and sources of the underlying data applied by the MEIC model are summarized 
elsewhere10,14. Both the emission estimates and the underlying statistics  
used to compile the emission inventory such as activity rates are obtained  
and serve as the base information for the decomposition of drivers behind the 
emission trends.

Decomposing drivers of air pollutant emission trends from 2002 to 2017. 
Detailed air pollutant emissions and other socioeconomic statistics are required 
as input data for the decomposition of emission trends. Emissions from  
detailed source categories at provincial level for the years 2002, 2007,  
2012 and 2017 are directly collected from the MEIC model, as well as the 
corresponding activity rates (that is, fuel consumption or material production). 
The activity rates in the MEIC model are compiled originally based on China’s 
official energy statistics10,14. Provincial non-thermal electricity generations, 
which are absent from the MEIC model, are collected from China Energy 
Statistical Yearbooks43. Other required socioeconomic statistics including 
sectoral GDP, price index and population are collected or compiled based 
on official national and provincial statistical yearbooks and datasets1,38–42. In 
this study, anthropogenic emissions of major air pollutants are attributed to 
31 sectors (Supplementary Table 2), including 29 commercial subsectors and 
non-commercial urban and rural residential sectors. Details of the sector 
mapping process between different datasets can be found in Supplementary 
Table 2 and Supplementary Methods.

Based on the data retrieved above, the LMDI approach15 is then used  
to decompose the effects of socioeconomic factors on the trends in air  
pollutant emissions. To facilitate the decomposition process, air pollutant 
emissions from the 31 final sectors are categorized into three source groups:  
energy consumption in the 29 commercial subsectors (Emisene), non-energy 
processes in the 29 commercial subsectors (Emisnon-ene) and energy  
consumption in the two non-commercial residential sectors (Emisres), as  
shown in equation (2):

Emistotal = Emisene + Emisnon-ene + Emisres (2)

Emissions from these three source groups can be expressed as the products of 
several factors as shown in equations (3–5):

Emisene =
∑

s

∑

f

Emiss,f
Ns,f

Ns,f

Ns

Ns

Gs

Gs

G
G
P P =

∑

s

∑

f
Us,fFs,fIsYsQP (3)

Emisnon-ene =
∑

s

Emiss
Gs

Gs

G
G
P P =

∑

s
UsYsQP (4)

Emisres =
∑

s

∑

f

Emiss,f
Ns,f

Ns,f

Ns

Ns

Ps
Ps =

∑

s

∑

f
Us,fFs,fIsPs (5)

where s and f denote source sector and fuel type, respectively; Emis, N, G and 
P represent emissions, energy consumption, economic output (that is, GDP) 
and population, respectively. Specifically in equation (5), Ps means the urban 
population for the urban residential sector or the rural population for the rural 
residential sector. U is the emission efficiency, which is defined as unit emission 
per energy consumption in equations (3) and (5) and unit emission per GDP in 
equation (4). F is the fuel-specific contribution to total energy consumption, which 
represents the fractional contribution of specific energy consumptions to the total 
energy consumption. I is the energy intensity, which reflects energy consumption 
per GDP obtained in equation (3) and energy consumption per capita in equation 
(5). Y is the sectoral economic contribution, which represents the fractional 
contribution of GDP obtained in a specific commercial sector to the total GDP, and 
Q represents economic affluence, which is per capita GDP obtained.

Impacts of factors on emission variations of each pollutant over 30 provinces 
(Tibet, Macao, Hong Kong and Taiwan are excluded due to the lack of input 
data) are then quantified using the LMDI approach. Because the results of LMDI 
decomposition are additive, aggregated impacts of each factor on emission 
variations are summed from the sector- and fuel-specific decomposition 
results from different source groups at provincial level. Nationally aggregated 
decomposition results are directly summed from the provincial-level results. Based 
on the physical concept of each factor and to reduce the computing resources 
required in the following air quality modelling procedure, factors in equations (3–
5) are combined. The impact of emission efficiency improvements (U) is regarded 
as end-of-pipe control policy effect (factor 2). Impacts of changes in energy 
structure (F) and energy intensity (I) are considered together as energy-climate 
policy effect (factor 3). Impact of economic structure adjustment (Y) is regarded 
as economic structure effect (factor 4). Impacts from economic growth (Q) and 
changes in population (P) are considered together as economic growth effect 
(factor 1). Emission trends during each sub-period are determined as inputs for the 
following air quality modelling.

Estimating contributions of the drivers to PM2.5 concentration trends. 
The CMAQ model version 5.0.1 (ref. 16) driven by the Weather Research 
and Forecasting model (WRF)44 v3.5.1 is applied to simulate China’s PM2.5 
concentrations from 2002 to 2017 and to isolate the contributions from the 
four socioeconomic factor as well as meteorological variation. The model is at 
a spatial resolution of 36 km, and the model configuration follows our previous 
studies45,46. Driven by initial and boundary conditions provided by the National 
Centers for Environmental Prediction Final Analysis reanalysis data, the WRF 
model provides simulated meteorological parameters as inputs to the CMAQ 
model. The CMAQ model is configured with CB05 as the gas-phase mechanism, 
AERO6 as the aerosol module and Regional Acid Deposition Model (RADM) as 
the aqueous-phase chemistry module. Boundary conditions for the CMAQ model 
are provided by the global GEOS-Chem model47 at a spatial resolution of 2° × 2.5°. 
In the CMAQ model, anthropogenic emissions for Mainland China are derived 
from the MEIC model. Emissions beyond Mainland China are obtained from the 
MIX Asian emission inventory48 and are fixed at the 2010 levels for all baseline and 
perturbation scenarios. Biogenic emissions for CMAQ simulation are calculated by 
the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1  
(ref. 49). Other emission sources, including sea salt50 and natural dust51, are 
calculated online by the CMAQ model.

Simulated meteorological parameters and surface PM2.5 concentrations for the 
four base years are evaluated against surface observations (Supplementary Tables 
4 and 5 and Figs. 1–3). The performance of the WRF model evaluated against 
observations has comparable performance to the benchmark metrics suggested 
based on various simulations in the eastern United States with 4–12 km grid 
resolutions on hourly basis52. The simulated PM2.5 in China (mean fractional bias 
−34.2%, mean fractional error 59.8%) are also within the criteria limits (±60% and 
75%, respectively) on daily basis suggested by the US Environmental Protection 
Agency53. Comparison between modelled and observed PM2.5 observations in 
2017 suggests that our model has a contrasting performance between eastern and 
western China. The model tends to underestimate PM2.5 concentrations in the 
western part of China where population is sparse, but have quite good performance 
(R = 0.75, normalized mean bias −5.3%) in the eastern part of China where about 
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93.4% of the national population lives. Given that the population is mostly in 
eastern China and our study mainly focuses on the drivers of PM2.5-related deaths, 
the underestimation of PM2.5 concentrations in the western part of China is not 
likely to change our conclusions. The underestimation of PM2.5 in urban areas in 
eastern China might be related to the overestimation of wind speed, as buildings 
and other human-made obstacles act as a momentum sink that considerably limits 
the advection of pollutants, which is not considered in a mesoscale model such as 
WRF, unless an urban parameterization is applied.

We also compared our model simulations with machine learning (ML)-based 
surface PM2.5 estimates54 (Supplementary Table 6 and Fig. 4). The ML-based 
PM2.5 data are estimated using ML models with high-dimensional expansion of 
numerous predictors, including satellite aerosol optical depth and other satellite 
covariates, meteorological variables, etc. More details about the methodology to 
retrieve ML-based PM2.5 data can be found elsewhere54. The ML-based PM2.5 data 
have an R of 0.83 compared with ground observations on annual basis. Compared 
with ML-based PM2.5 data in the four years, the simulated PM2.5 concentrations 
over the eastern part of China correlate reasonably well with ML-based data with 
R values ranging from 0.87 to 0.92 between years. The normalized mean bias 
between population-weighted PM2.5 from CMAQ simulations and ML-based data 
are between −5.6% and −3.5%. Because of the lack of observations in the early 
period before 2013, we use the ML-based PM2.5 dataset to evaluate the trends of 
CMAQ simulations, which may introduce some uncertainties. It is worth noting 
that the uncertainties in PM2.5 simulation could then propagate to health impact 
assessment and introduce uncertainties in premature mortality estimates. More 
discussion about the model evaluation can be found in Supplementary Methods.

We use a ‘Fix emission’ scenario to quantify the impacts of interannual 
meteorological variations on PM2.5 concentrations by fixing anthropogenic 
emissions at the levels of the first year of each sub-period (Supplementary Table 
3). Another commonly used method to quantify the impacts of meteorological 
variations on PM2.5 trends are the statistical models based on continuous ground 
observations. The statistical-model-based approach performs better in providing 
empirical relationships between individual meteorological parameters with PM2.5 
concentrations, which facilitates understanding of the processes affecting pollutant 
concentrations. However, such a method is not suitable in China before 2013 
when ground observations are unavailable. Previous studies have reported that 
both approaches have similar conclusions when applied in China after 201355–57, 
indicating that the CMAQ-based approach is valid and robust. More discussion 
about these two approaches and sensitivity tests regarding the non-linear effects 
from the CMAQ-based approach are provided in Supplementary Methods.

The impacts of other factors on PM2.5 concentrations are quantified using the 
CMAQ model with the brute-force method. Four groups of perturbation scenarios 
are designed to quantify the impacts of economic growth, end-of-pipe control 
policies, energy-climate policies and economic structure adjustment on surface 
PM2.5 concentrations, as summarized in Supplementary Table 3. Impacts of each 
factor during the three sub-periods (2002–2007, 2007–2012 and 2012–2017) are 
quantified separately, with perturbation simulations conducted for each factor in 
the years 2007, 2012 and 2017. Detailed descriptions of the emission scenarios and 
the calculation equations are provided in Supplementary Methods.

Mortality estimation and decomposition. Premature mortality attributable 
to PM2.5 exposure is quantified using the newly developed GEMM model17. 
GEMM is built for estimating PM2.5-related non-accidental mortality due to 
non-communicable diseases and lower respiratory infections (NCD+LRI). GEMM 
NCD+LRI parameterizes the dependence of relative risk (RR) of NCD+LRI on 
concentration (C) as

RR (C) = e

θ×ln
(

z
α
+1

)

1+e

(

−
z−μ

v

)

, where z = max(0, C − 2.4) (6)

where θ, α, μ and v determine the shape of the PM2.5–mortality relationships. 
According to the GEMM framework, the RR of NCD+LRI is calculated by age for 
adults aged from 25 to greater than 85 years in 5-year intervals. The attributable 
fraction (AF) of mortality to PM2.5 exposure can be further calculated as

AF (C) =

RR (C) − 1
RR(C) (7)

The premature mortality (M) attributable to PM2.5 exposure for a population 
subgroup s (population by age and gender) in grid j is further calculated as

Ms,j(Cj) = Pj × PSs × Bs × AFs(Cj) (8)

where Pj represents the total population amount in grid j, PSs represents the 
national fraction of a population subgroup s to the total population, Bs represents 
the national baseline mortality incidence rate of NCD+LRI for population 
subgroup s and AFs(Cj) is the attributable fraction of NCD+LRI to PM2.5 exposure 
at level Cj for population subgroup s.

According to equation (8), PM2.5-attributable premature mortality is 
determined by four quantifiable variables and the changes in these variables 

contribute to the changes in PM2.5-related mortality. Following the GBD approach3, 
we quantify impacts from the changes in each of these four factors on the changes 
in premature mortality during each of the three sub-periods based on a series of 
sensitivity analyses that estimate the contribution from each factor incrementally. 
Technically, the decomposition with four factors in equation (8) has 24 
decomposition sequences, and the mean value of the impact of each factor through 
all 24 sequences is calculated.

The net change in mortality contributed by changes in PM2.5 exposure (ΔME) 
is further disaggregated into contributions from five factors related to exposure 
variations (“exposure” factors) decomposed previously. By multiplying fractional 
contribution of an “exposure” factor to PM2.5 variations to ΔME, contributions of 
the factor to changes in mortality can then be derived. More details could be found 
in Supplementary Methods.

Uncertainties and limitations. Our study is subject to a number of 
uncertainties and limitations due to the use of a complex model framework. 
Uncertainties are discussed and quantified for each step in Supplementary 
Methods, and the overall uncertainty ranges (95% CI) associated with PM2.5 
exposure and mortality estimates are presented in Fig. 3. First, bottom-up 
emission inventory has uncertainties due to incomplete knowledge on activity 
rates, combustion and production technologies and emission factors19,58,59. 
The MEIC model has been widely applied in air quality simulations, and 
simulations are evaluated against surface and satellite-based observations60–62. 
Second, the LMDI approach introduces no uncertainties mathematically as 
the decomposition results do not contain residual terms15. Although the use 
of different decomposition methods might generate different decomposition 
results, the LMDI is regarded as the most preferred index decomposition 
analysis method due to its theoretical foundation, adaptability and ease of use 
and result interpretation63. Third, PM2.5 concentrations simulated by the WRF/
CMAQ model are also subject to uncertainties due to the model’s imperfect 
representation of chemical and physical processes60. We compare the modelled 
PM2.5 with ground observations and ML-based surface PM2.5 estimates54, finding 
reasonable agreements for densely populated regions in China. The normalized 
mean bias of our simulated national population-weighted annual mean PM2.5 
concentrations is about 5% as compared with the ML-based estimates. Last 
but not least, uncertainties in PM2.5-related death estimates mainly come from 
the limited epidemiology evidence and statistical estimation of the GEMM 
model17. The overall uncertainties in PM2.5 exposure and premature mortalities 
are calculated by Monte Carlo simulations that integrate errors in WRF/CMAQ 
simulations and errors in GEMM exposure-response function together. The 
error bars are presented in Fig. 3, and details are available in Supplementary 
Methods. The uncertainty estimates should be regarded as conservative because 
not all of the potential uncertainties are represented in the error bars. There 
are additional factors that might influence the PM2.5 exposure trend but are 
not considered as major drivers (for example, land use and land cover changes, 
aerosol radiative feedbacks), which is a limitation of our study. However, the 
changes in PM2.5 exposure and PM2.5-related deaths induced by these factors are 
minor22,64,65 compared with the factors considered in this study and will thus not 
influence our conclusions.

Data availability
The MEIC emission inventory is available from www.meicmodel.org. The dataset 
generated during this study is available in the figshare repository https://doi.
org/10.6084/m9.figshare.14493375. Source data are provided with this paper.

Code availability
The code of the WRF model is available at https://www2.mmm.ucar.edu/wrf/users/
download/get_sources.html. The code of the CMAQ model is available at https://
github.com/USEPA/CMAQ/tree/5.0.1. The codes used for analysing data are 
available in the figshare repository https://doi.org/10.6084/m9.figshare.14493375.
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Extended Data Fig. 1 | Methodology framework to estimate drivers of China’s PM2.5-related deaths. The MEIC, LMDI, WRF, CMAQ, and GEMM 
represent the Multi-resolution Emission Inventory for China, the Logarithmic Mean Divisia Index decomposition analysis, the Weather Research and 
Forecasting Model, the Community Multiscale Air Quality Model, and the Global Exposure Mortality Model, respectively.
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Extended Data Fig. 2 | Sectoral contributions of major air pollutant emissions in 2002–2017. Sectoral contributions of SO2, NOx, and primary PM2.5 
emissions for 11 sectors in 2002, 2007, 2012, and 2017.
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Extended Data Fig. 3 | Changes in PM2.5 concentrations associated with changes in economic structure in China from 2002 to 2007. Changes in 
economic structure majorly increased PM2.5 concentrations over populated northern provinces such as Hebei, Shandong, and Henan, whose economy 
highly relies on heavy industries.
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Extended Data Fig. 4 | Effects of interannual meteorological variations on the national population-weighted monthly mean PM2.5 concentrations. 
Results for the sub-periods (a) 2002–2007, (b) 2007–2012, and (c) 2012–2017, respectively. These results are derived based on simulations of ‘BASE’ and 
‘Fix emission’ scenarios.
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Extended Data Fig. 5 | Trends in air pollutant emissions and emission removal rates in China over 2002–2017 for (a) SO2, (b) NOx, and (c) PM2.5. The 
blue and orange lines represent actual and estimated unabated emissions, respectively. The red line represents average removal rates.
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Extended Data Table 1 | Emission reduction measures implemented in China from 2002 to 2017
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Extended Data Table 2 | Variations in NOx emissions in major sectors and the changes induced by end-of-pipe control policies during 
2002–2017 (unit: Tg)
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Extended Data Table 3 | Sensitivity tests of national population-weighted annual mean PM2.5 concentrations

National population-weighted annual mean PM2.5 concentrations calculated based on combinations of PM2.5 concentration and population distribution from different years (unit: µg m−3).
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