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ABSTRACT: Air pollution has altered the Earth’s radiation
balance, disturbed the ecosystem, and increased human morbidity
and mortality. Accordingly, a full-coverage high-resolution air
pollutant data set with timely updates and historical long-term
records is essential to support both research and environmental
management. Here, for the first time, we develop a near real-time
air pollutant database known as Tracking Air Pollution in China
(TAP, http://tapdata.org.cn/) that combines information from
multiple data sources, including ground observations, satellite
aerosol optical depth (AOD), operational chemical transport
model simulations, and other ancillary data such as meteorological
fields, land use data, population, and elevation. Daily full-coverage
PM2.5 data at a spatial resolution of 10 km is our first near real-time
product. The TAP PM2.5 is estimated based on a two-stage machine learning model coupled with the synthetic minority
oversampling technique and a tree-based gap-filling method. Our model has an averaged out-of-bag cross-validation R2 of 0.83 for
different years, which is comparable to those of other studies, but improves its performance at high pollution levels and fills the gaps
in missing AOD on daily scale. The full coverage and near real-time updates of the daily PM2.5 data allow us to track the day-to-day
variations in PM2.5 concentrations over China in a timely manner. The long-term records of PM2.5 data since 2000 will also support
policy assessments and health impact studies. The TAP PM2.5 data are publicly available through our website for sharing with the
research and policy communities.
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1. INTRODUCTION

With rapid urbanization and economic growth, anthropogenic
emissions of reactive gases, aerosols, and aerosol precursors are
being emitted into the atmosphere, and these substances
substantially changed the atmospheric composition. Conse-
quently, worsening air pollution has altered the Earth’s
radiation balance, distressed the ecosystem and increased the
risks of human morbidity and mortality.1,2 In particular, one of
the major air pollutants in China is fine particulate matter
(PM2.5), which could cause serious health problems3,4 and
reduce visibility.5 Hence, understanding the spatial and
temporal variations of ambient PM2.5 concentrations con-
stitutes the basis for research studies associated with air
pollution, climate change, and environmental health. It follows,
then, that a complete-coverage high-resolution PM2.5 data set
with timely updates and historical long-term records is
essential to support both scientific research and environmental
management. A complete-coverage data set would allow us to
obtain a full spatial picture of PM2.5 pollution and identify
heavily polluted areas that cannot be shown by the ground
monitoring stations. Full-coverage data set can also help to

avoid exposure misclassification in epidemiological studies.6,7

Moreover, real-time or near real-time updates of PM2.5 data
would help us track substantial changes in air pollution during
haze events or special times such as the coronavirus pandemic.
It could also be linked to real-time or near real-time acute
effects of air pollution such as asthma flare-ups, hospital
admissions and premature deaths, and alert the population for
real-time public health prevention. In addition, a historical
long-term data set benefiting from a consistent methodology
could support clean air policy assessments and chronic health
impact studies.8−11

Several data sources could provide information about PM2.5
pollution. Among them, ground measurements are the most
accurate way to obtain ambient PM2.5 concentrations.
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However, due to the installation and maintenance costs of
ground networks, monitoring stations are usually sparse and
unevenly distributed, with most of the stations located in urban
areas.11,12 Moreover, PM2.5 ground networks in China were
established in 2013, so prior data are unavailable. As an
alternative, chemical transport models (CTMs) could provide
complete-coverage simulations of PM2.5 concentrations and
could reproduce the spatial and temporal trends of PM2.5
concentrations when using reasonable emission invento-
ries.10,13 However, biases still exist in the simulated absolute
values of PM2.5 due to uncertainties in emission inventories14

and the lack of certain physical and chemical processes in the
model.15−17 Satellite-retrieved aerosol optical depth (AOD)
data, which can reflect the aerosol abundance in the
atmosphere, have the advantage of long-term records and a
high resolution. However, AOD data are missing during haze
events, on cloudy days, and over bright surfaces such as desert
and areas covered with snow, and the spatial distribution of
missing data is sometimes nonrandom, which might cause
biases in the long term average value.18 Accordingly, a data set
that combines data from multiple sources is needed to take

advantage of all available information and to meet the
requirements of such a data set, namely, a high accuracy, a
full spatial coverage, a long temporal span, and real-time
updates.
Previous studies have developed different methods to fuse

two or more of the above data sets with other ancillary data in
China to improve the estimation of PM2.5.

19−28 These methods
include CTM-based algorithms,26,27 physical models,21 stat-
istical models such as linear mixed-effects models and
generalized additive models,19,22 and machine learning models
such as random forest and extreme gradient boosting.20,23−25,28

As a result, numerous researchers have developed historical
data sets in China, for example, 10 km PM2.5 data between
2000 and 2016 by Xue et al.25 and 1 km PM2.5 data between
2000 and 2018 by Wei et al.23 However, only some of these
studies fill the gaps in AOD data using CTM simulations on a
daily scale and achieve full-coverage daily PM2.5 concen-
trations.24,25,28 And previous studies usually underestimate
PM2.5 concentrations on highly polluted days (e.g., PM2.5 >
150 μg/m3) due to the small sample size of high-pollution
cases and highly nonlinear relationship between PM2.5 and

Figure 1. Operational process of the near real-time PM2.5 data generated from TAP.

Table 1. Summary of the Datasets Used in This Study from Multiple Sources

data category data name
spatial

resolution
temporal
frequency

time
coverage data source

ground observations PM2.5 measurements point hourly 2013 to date http://www.cnemc.cn/
satellite AOD MODIS Terra AOD ∼10 km daily 2000 to date https://ladsweb.modaps.eosdis.nasa.gov/

MODIS Aqua AOD ∼10 km daily 2000 to date https://ladsweb.modaps.eosdis.nasa.gov/
operational WRF/
CMAQ

NCEP/FNL 1° daily 2000 to date https://rda.ucar.edu/datasets/ds083.2/

NCEP/GFS 1° daily 2000 to date https://www.nco.ncep.noaa.gov/pmb/products/gfs/
MEIC emissions 36 km monthly 2000 to date http://meicmodel.org/
CMAQ simulations 36 km daily 2000 to date -

meteorological fields MERRA-2 0.5°×0.625° 3-hly 2000 to date https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
GEOS-FP 0.5°×0.625° 6-hly 2011 to date https://gmao.gsfc.nasa.gov/GMAO_products/NRT_

products.php
land use data FROM-GLC 30 m yearly 2000−2018 http://data.ess.tsinghua.edu.cn/
population GPW v4 1 km yearly 2000 to date https://beta.sedac.ciesin.columbia.edu/

WorldPop county yearly 2000 to date https://www.worldpop.org/
China City
Yearbooks

national yearly 2000 to date https://data.cnki.net/

elevation GDEM 30 m - - https://earthexplorer.usgs.gov/
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AOD.25,29 Furthermore, none of these works provide near real-
time PM2.5 data publicly to support real-time public health
prevention. Consequently, a near real-time data set with gap-
filled daily PM2.5 estimates in China that can be shared with
the research and policy communities remains lacking.
In this study, we develop the Tracking Air Pollution in

China (TAP, http://tapdata.org.cn/) database based on an
operational CTM, a two-stage machine learning model and a
gap-filling method.30 Our goal is to combine information from
multiple data sources and provide near real-time (i.e., one-day
delay) PM2.5 data on a daily scale with complete coverage at a
spatial resolution of 10 km since 2000 to support related
studies and environmental management. TAP is fully
integrated on the cloud-computing platform, which allows
users to conveniently access all customized data products
online. Due to the downloading, processing and modeling
procedures, the PM2.5 data of the previous day are available to
the public at approximately 9:00 AM Beijing time.

2. DATA AND METHODS
Figure 1 shows the modeling framework of the TAP PM2.5 data
set, including input data obtained from multiple data sources,
processing of the input data, and the models developed to fuse
the multisource data and generate near real-time PM2.5
retrievals.
2.1. Multisource Input Data. Table 1 summarizes all the

input data used in this study, including ground observations,
satellite AOD, operational Weather Research and Forecasting/
Community Multiscale Air Quality Modeling System (WRF/
CMAQ), and other ancillary data such as meteorological fields,
land use data, total population, and elevation. The PM2.5
measurements updated every hour are collected from the
national air quality monitoring network (http://www.cnemc.
cn/) in China, which includes ∼1600 stations over China.
Continuous identical data over 3 h are excluded, and then the
daily mean PM2.5 is calculated only if at least 12 hourly
measurements are available. The PM2.5 measurements are
matched to the 10 km grid cells they fall in.
Moderate Resolution Imaging Spectroradiometer (MODIS)

Collection 6 level 2 aerosol products31 from both Aqua and
Terra at a spatial resolution of 0.1° are downloaded from the
National Aeronautics and Space Administration (NASA,
https://ladsweb.modaps.eosdis.nasa.gov/) of the United
States. We use AOD measurements retrieved by both the
Dark Target (DT) algorithm31 and the Deep Blue (DB)
algorithm32 from Terra and Aqua to improve the spatial
coverage of AOD data. A daily linear regression is first fitted
between the DT and DB AOD when both are available for
Terra and Aqua separately and then used to fill the missing
AOD when only the DT AOD or the DB AOD is valid. Then,
the AOD averaged between the DT and DB AOD is calculated
for Terra and Aqua separately. Similarly, a second linear
regression is fitted between the Terra and Aqua AOD to fill the
missing AOD when only one of them is available. The average
Terra and Aqua AOD is used to represent the daily aerosol
loading.33

The WRF/CMAQ modeling system is included in our work
to provide daily PM2.5 simulations. We employ the National
Center for Environmental Prediction Final Analysis (NCEP-
FNL, https://rda.ucar.edu/datasets/ds083.2/) and the Global
Forecast System (NCEP-GFS, https://www.nco.ncep.noaa.
gov/pmb/products/gfs/) to drive the WRF model. Anthro-
pogenic emissions are taken from the Multiresolution Emission

Inventory in China (MEIC, http://meicmodel.org/),34,35

which is updated in a timely manner using a bottom-up
approach based on near real-time activity indicators.36 More
details about the dynamic emissions can be found in Zheng et
al.,36 and a more in-depth description of the WRF/CMAQ
model is provided in Section 2.2.1. Daily PM2.5 simulations
from the WRF/CMAQ model are interpolated into the 10 km
grid using the inverse distance weighting (IDW) method.
The meteorological analysis data are taken from the

Modern-Era Retrospective Analysis for Research and Applica-
tions Version 2 (MERRA-2) data set at a resolution of 0.5° ×
0.625°37 and the Goddard Earth Observing System Forward
Processing (GEOS-FP) data set at a resolution of 0.25° ×
0.3125°.38 We utilize the following parameters extracted from
the analysis data: surface albedo, surface pressure, surface
incoming shortwave flux, surface net downward shortwave flux,
surface net downward longwave flux, total incoming shortwave
flux, total net downward shortwave flux, total latent energy flux,
cloud area fraction for low clouds, total cloud area fraction,
total column ozone, total column odd oxygen, bias-corrected
total precipitation, total precipitable ice water, total precipit-
able water vapor, total precipitable liquid water, evaporation
from turbulence, 2 m specific humidity, 2 m dew point
temperature, 2 m air temperature, 2 m eastward wind (U
wind), 2 m northward wind (V wind), 10 m U wind, 10 m V
wind, 10 m wind speed, U wind at 500 hPa, V wind at 500 hPa,
U wind at 850 hPa, V wind at 850 hPa, planetary boundary
layer height, and snowfall. Daily averaged meteorological
analysis data are interpolated into the 10 km grid using the
IDW approach.
We also download the urban and rural land cover

classification data at a spatial resolution of 30 m from Gong
et al.39 (http://data.ess.tsinghua.edu.cn/) and elevation data at
a spatial resolution of 30 m from the Global Digital Elevation
Model (GDEM) version 2 (https://earthexplorer.usgs.gov/).
Population data at a spatial resolution of 1 km are taken from
the Gridded Population of the World (GPW) version 4 data
set and are calibrated using the WorldPop data set at the
county level and the total population reported in China City
Yearbooks. The land cover data and elevation data are
averaged within the 10-km grid while the population data are
summed within the 10-km grid.

2.2. Algorithm Description. 2.2.1. Operational WRF/
CMAQ Modeling System. The TAP database includes an
operational WRF/CMAQ modeling system to provide daily
PM2.5 simulations as one of the input data sources, which could
improve the accuracy of PM2.5 estimations and fill the gaps
caused by missing AOD data. The WRF model version 3.9.1
and CMAQ model version 5.2 (https://www.cmascenter.org/
cmaq/) are used in our work. The simulation domain covers all
of China with a horizontal resolution of 36 km. The vertical
resolution is designed as 46 sigma levels from the ground
surface to 100 hPa for WRF but only 28 vertical layers in
CMAQ after the processing of the Meteorology-Chemistry
Interface Processor. For the WRF model, the NCEP-FNL and
NCEP-GFS data are used to provide the initial and boundary
conditions, whereas the NCEP-GFS sea surface temperature
reanalysis data and NCEP Automated Data Processing global
observational weather data are used for analysis, observation,
and soil nudging. The parametrization scheme follows Cheng
et al.40 with the Kain-Fritsch cumulus physics scheme version
241 modified to the Grell-Freitas ensemble scheme.42 For the
CMAQ model, we use the CB05 gas-phase mechanism with
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the CMAQv5.1 update and sixth-generation CMAQ aerosol
mechanism (AERO6).
The dynamically updated anthropogenic emissions for

mainland China are taken from the MEIC.34−36 Emissions
for other Asian countries and regions are obtained from the
MIX inventory.43 Biogenic emissions are calculated by the
Model of Emissions of Gases and Aerosols from Nature
(MEGAN) version 2.1.44 Sea salt and dust aerosol emissions
are calculated online by the CMAQ model.
The simulated PM2.5 concentrations from our WRF/CMAQ

model have been fully evaluated against ground measurements
in our previous studies.10,40,45 Accordingly, the model
performance statistics can meet the recommended perform-
ance criteria, and the simulated results have been used for
policy assessment and health impact studies in China.10,40,45

2.2.2. Two-Stage Machine Learning Model. A two-stage
machine learning model coupled with the synthetic minority
oversampling technique (SMOTE) developed in our previous
study46 is used to generate the TAP PM2.5 data, as presented in
Figure 1. In the first stage, we define a high-pollution indicator
to improve the PM2.5 estimations on highly polluted days,
when PM2.5 are usually underestimated in statistical and
machine learning models.23,28 This high-pollution indicator is
calculated based on PM2.5 observation data and describes
whether the PM2.5 observations at each location exceed the
monthly mean by two standard deviations. As high-pollution
events cover only 3.9% of our training data set, which hinders
the model’s ability to characterize the associations between
high-pollution events and other predictors, we adopt the
SMOTE technique to resample our data set and obtain a
balance between high-pollution and normal samples. The
resampled data set is then used to train the first-stage random
forest model with all the input data except for the CMAQ
simulations, after which the predicted full-coverage high-
pollution indicator is passed to the second-stage model as one
of the input data. In the second stage, we use the residuals
between the PM2.5 measurements and the CMAQ PM2.5
simulations as the dependent variable to train the second-
stage random forest model. The predicted residuals combined
with the CMAQ simulations represent the final PM2.5
estimations.
Compared with the models presented in previous studies,

our model has two major advantages. In the first stage, the
SMOTE algorithm balances the uneven proportion of high-
pollution and normal data, which could improve the model
performance at high PM2.5 levels. In the second stage, using the

residuals between simulated and measured PM2.5 enhances the
variability of the dependent data, which could enhance the
responses of predictors to PM2.5 variations, thus improving the
prediction accuracy. We design a sensitivity test model (Sens)
without the SMOTE technique and using PM2.5 measurements
as the dependent variable to show our model improvements.

2.2.3. Gap-Filling Method. Our previous study30 evaluated
different gap-filling strategies and proposed a binary tree-based
algorithm coupled with WRF/CMAQ simulations to fill the
gaps in missing AOD. As the missingness of satellite AOD are
primarily related to meteorological conditions (e.g., cloudy,
rainy days) and PM2.5 pollution (e.g., highly polluted days), the
tree-based algorithm could directly predict missing PM2.5 by
mining the relationship between availability status of satellite
data, PM2.5 concentrations and other Supporting Informa-
tion.47 This method is robust at characterizing the spatial
patterns of PM2.5 without generating artificially oversmoothed
PM2.5 spatial distributions and is efficient for use in a near real-
time data product.30 In each step of our two-stage model, a
dichotomous predictor defined by whether the satellite AOD is
available is constructed as the cut point of the first layer of the
decision tree. This predictor serves to build the associations
between satellite AOD availability, PM2.5 concentration, and
other supportive information, such as WRF/CMAQ simu-
lations and meteorological conditions, and helps to fill the gaps
in the final PM2.5 estimations.

2.3. Operational Process of the TAP PM2.5 Data. Figure
1 shows the operational process for generating the near real-
time PM2.5 product in TAP, which includes three steps: data
downloading, data processing and PM2.5 modeling. Data from
multiple sources (summarized in Table 1) are routinely
downloaded to the cloud-computing platform every day once
they are available. As these data are at different temporal and
spatial resolutions, they are processed to match the 10 km grid
defined in our work, as described in Section 2.1. Typically, the
downloading and processing of the multisource input data are
finished around 5:10−6:20 AM Beijing time.
Models are trained using input data from different time

periods to develop PM2.5 data from 2000 to date. For years
when ground PM2.5 measurements are available (i.e., 2013−
2020), individual models are developed for these years using
input data within each year. For the hindcast of PM2.5 prior to
2013 when ground measurements are absent, a model trained
with data set between 2013−2019 is developed and validated
to provide robust hindcasting power.

Table 2. Model Performance Compared with Other Studies Developing National PM2.5 Datasets in China

gap-filled spatial resolution temporal resolution CV type CV R2 RMSE (μg/m3)

Ma et al.22 no 10 km daily (2004−2013) 10-fold CV 0.79 27.4
Fang et al.19 no 10 km daily (2013−2014) 10-fold CV 0.80 22.8
He and Huang53 no 3 km daily (2015) 10-fold CV 0.80 18.0
Xiao et al.24 yes 10 km daily (2013−2017) 10-fold CV 0.79 21.0
Xue et al.25 yes 10 km daily (2000−2016) by-year CV 0.61 27.8
Liang et al.20 yes 1 km monthly (2000−2016) 10-fold CV 0.93 6.2
Wei et al.23 no 1 km daily (2013−2018) 10-fold CV 0.86−0.90 10.0−18.4

monthly (2000−2018)
Huang et al.28 yes 1 km daily (2013−2019) 10-fold CV 0.87−0.88 11.9−21.9

by-year CV 0.62 27.7
TAP PM2.5 yes 10 km daily (2000−current) out-of-bag CV (individual years) 0.80−0.88 13.9−22.1

spatial CV (individual years) 0.69−0.83 14.6−26.4
by-year CV (hindcast model) 0.58 27.5
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For the near real-time product since Jan 2021, the training
data set contains one-year data from the year 2020 and is
updated every day on a rolling basis to include the most recent
input data. The input data size (i.e., one year) is selected based
on a series of sensitivity tests that use data of one, two, three
and eight years to train the two-stage model (SI Table S1).
When the size of the training data increases from one year to
eight years, the time consumed to fit the model increases
exponentially from hours to days (SI Table S1) while the
model performance decreases slightly (SI Figure S1). There-
fore, one-year data are selected in our near real-time model for
both a reasonable fitting time and a good model performance.
The two-stage random forest model is trained by the one-year
rolling updated data set every day, and then near real-time
PM2.5 data are generated and uploaded to our website. Usually,
the daily PM2.5 prediction is generated no later than 8:25 AM
Beijing time and uploaded to our website by 8:45 AM Beijing
time.

3. EVALUATION OF MODEL PERFORMANCE

The performance of our two-stage model is evaluated through
three cross-validation (CV) experiments: out-of-bag CV,
spatial CV, and by-year CV. The out-of-bag CV is the most
commonly used CV for the random forest models that
compares the PM2.5 measurements with the predictions of out-
of-bag samples. Spatial CV evaluates the model’s ability to
make predictions at locations without monitors; all the
monitoring stations are randomly divided into five subsets,
and each time, the model is trained using data from four
subsets and tested on the data from the remaining subset.
Similarly, by-year CV evaluates the model’s hindcast prediction
ability, which sequentially selects one year of data for testing
and trains the model with the data from the remaining years.
Table 2 shows the CV results of our two-stage random forest

models at the daily level, including the R2 and root-mean-
square error (RMSE) values between the CV estimates and the
ground measurements. The PM2.5 predictions from the out-of-
bag CV show good agreements compared against the ground
observations, with R2 of 0.80−0.88 and RMSE of 13.9−22.1
μg/m3 for different years between 2013−2020, which indicates

Figure 2. Comparison between the two-stage model in TAP and the sensitivity test model “Sens”. Left column: PM2.5 biases from TAP (orange)
and Sens (gray) under different PM2.5 pollution levels in (a) China, (b) the Beijing-Tianjin-Hebei region and (c) the Fenwei Plain. Right column:
examples of daily PM2.5 variations from ground observations (blue), TAP (orange), and Sens (gray).

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c01863
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01863/suppl_file/es1c01863_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01863/suppl_file/es1c01863_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01863/suppl_file/es1c01863_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01863?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that our two-stage model is quite robust. The spatial CV R2

value decreases by 0.05−0.11 when compared with the out-of-
bag CV, indicating that unobserved spatial trends contribute to
the PM2.5 predictions. The model’s hindcast performance
further decreases in the by-year CV, with an R2 of 0.58 and
RMSE of 27.5 μg/m3, reflecting a slight overfit in the hindcast
of PM2.5 in years prior to 2013.
Our model’s performance is comparable to that of models

presented in other studies on the basis of the R2 and RMSE
values shown in Table 2. The statistical or machine learning
models at the 10-km grid on a daily scale have 10-fold CV R2

values ranging between 0.79 and 0.80 in China,19,22,24 which
are similar to our out-of-bag CV results (i.e., 0.83 on average).
Models with a 1 km grid have higher R2 values,23,28 which
might be partially explained by the correlations between PM2.5
and the 1 km AOD being higher than those between PM2.5 and
the 10 km AOD, as well as the substantial increase in
collocated AOD−PM2.5 pairs at a 1 km resolution than at a 10
km resolution for a larger sample size.48

4. ILLUSTRATION OF TAP CAPABILITIES

4.1. Near Real-Time Updates. Our TAP PM2.5 product is
the first near real-time PM2.5 database in China based on
multisource data, including ground measurements, satellite
AOD, high-resolution emission inventories (i.e., the MEIC
inventory) and WRF/CMAQ simulations. Several factors
support the timely update of PM2.5 data. First, the dynamic

updates of anthropogenic emissions in China by the MEIC and
the high-performance computer at Tsinghua University
facilitate the operational simulation of the WRF/CMAQ
model, which is an important data source for PM2.5
estimations, as has been evaluated in previous studies.25,28

Second, we choose the tree-based algorithm to fill the gaps in
PM2.5 concentrations, which is accurate and has reasonable
speed. Other methods for filling in AOD gaps such as the
multiple imputation method make use of more PM2.5
observations in the training data set;18 however, such a
method has a much lower computation speed, and we found
similar performances between these two gap-filling methods in
our previous work.30 Finally, the cloud-computing platform
makes it possible to develop the model online and allows users
to conveniently access all the data products. The daily data set
of PM2.5 from TAP can be found through our website in near
real time.

4.2. Improved Performance on Polluted Days. Our
two-stage model coupled with the SMOTE technique
improves the PM2.5 estimations on highly polluted days.
Compared to the sensitivity test model (Sens) without
SMOTE and using PM2.5 measurements directly as the
dependent variable, the two-stage model has a similar R2 but
higher regression slope (0.97 vs 0.94) when evaluated against
ground measurements. Figure 2 shows a detailed comparison
between our two-stage model and the Sens model using year
2015 as an example. Usually, PM2.5 concentrations are
underestimated over polluted days but a little overestimated

Figure 3. Daily full-coverage PM2.5 concentrations from TAP (middle row) compared with estimations without gap filling (top row) and the
ground observations (bottom row). Data for 26−28 December 2020 are shown as examples.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c01863
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01863?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01863?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in clean days. After adopting our two-stage model, the mean
biases over China at high PM2.5 levels above 150 μg/m3

decrease by 5.9 μg/m3 (Figure 2a), and the number is even
larger for the Fenwei Plain (i.e., 7.7 μg/m3). We also present
examples of the estimated daily variations in PM2.5
concentrations from TAP and Sens and find that TAP has
better ability in capturing the concentrations peaks on polluted
days.
4.3. Full-Coverage on Daily Scale. Figure 3 shows full-

coverage daily maps of the TAP PM2.5 as well as the
estimations without gap-filling and ground observations during
an example period, 26−28 December 2020. On these days,
satellite AOD data only cover 16%−24% of the grid cells in
China; thus, many PM2.5 concentration hotspots are missing.
Such missingness might cause biases in the averaged
concentrations as the missing are sometimes nonrandom. In
summer, AOD data are usually missing over southern China
due to rain and clouds, while in winter, AOD data over
northern China are usually missing due to snow cover and
haze.49 The nonrandom distribution of missing AOD causes
negative biases in the average PM2.5 in the north and positive
biases in the average PM2.5 in the south.18,26 After gap-filling
with supportive information from the WRF/CMAQ simu-
lations and meteorological data, the daily maps of PM2.5
become complete and can more accurately capture the day-
to-day variations in PM2.5. For example, the TAP PM2.5 maps
successfully capture the PM2.5 changes across the North China
Plain during the haze event that occurred on 26−28 December

2020 (Figure 3). PM2.5 pollution started to rise on 26
December 2020, and high PM2.5 levels were found in southern
Hebei and northern Shandong. Then, the pollution expanded,
and on 28 December 2020, Shandong, Henan and northern
Anhui were covered by haze exceeding 180 μg/m3. Such
patterns could not be captured using the PM2.5 data without
gap filling.

4.4. Historical PM2.5 Trends Since 2000. The TAP PM2.5
database is also able to provide historical trends of PM2.5 from
2000 to the present (Figure 4). Indeed, PM2.5 estimates prior
to 2013 have larger uncertainties, as there are no observation
data to calibrate and evaluate our models. The by-year CV
indicates that the model’s hindcast ability has a smaller R2 and
larger RMSE than the out-of-bag CV. However, we use the
year-by-year emission inventory from MEIC and the long-term
CMAQ simulations as important input data to support the
PM2.5 estimates before 2013, thereby providing the best
available knowledge of the spatial and temporal trends of PM2.5
concentrations in history over China. Moreover, the long-term
satellite AOD data set also provides valuable observational
evidence of aerosol changes since 2000. We believe that the
long-term trend of PM2.5 constrained by these two data sets is
reliable.
We also compare the PM2.5 trends estimated by our data

with the long-term PM2.5 data set generated by Hammer et
al.50 (2000−2018) and the CHAP data developed by Wei et
al.23 (2000−2020) (SI Figure S2). Similar trends are found for
the time when ground measurements are available, except for

Figure 4. Historical data set of PM2.5 from 2000 to the present. (a−f) Annual mean PM2.5 concentrations for 2000, 2006, 2010, 2013, 2017, and
2020. (g) Population-weighted mean PM2.5 in China from 2000 to the present on a monthly scale.
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CHAP in the pearl river delta. A possible reason is that CHAP
is not gap-filled and the nonrandom missingness in AOD lead
to biases in the annual mean PM2.5 value. For the time without
available ground observations, the data by Hammer et al.50 are
always lower compared to TAP and CHAP. Emission estimates
over China show that primary PM2.5 emissions and SO2
emissions peaked around 2006,34 which is more consistent
with the trends estimated by TAP and CHAP.
Figure 4 shows the PM2.5 trends since 2000 in China. The

TAP data capture the PM2.5 increase before 2006 (when there
is no efficient emission control policy) and the sharp drop in
PM2.5 concentrations after 2013 (when strict control measures
were implemented). The peak of the national population-
weighted mean PM2.5 concentrations occurred in 2006 (68.0
μg/m3), the starting year of the 11th Five Year Plan (FYP,
2006−2010), when flue-gas desulfurization devices were
installed in coal-fired power plants. After that, the increasing
trend of PM2.5 concentrations was reversed. Since 2013, strict
clean air policies have been implemented, that is, the Air
Pollution Prevention and Control Action Plan (2013−2017)
and the Blue Sky Protection Campaign (2018−2020). The Air
Pollution Prevention and Control Action Plan reduced the
annual population-weighted mean PM2.5 from 62.5 μg/m3 in
2013 to 44.4 μg/m3 in 2017, and the Blue Sky Protection
Campaign further reduced the PM2.5 concentrations to 33.1
μg/m3 in 2020.

5. DISCUSSION

In this study, we develop the TAP PM2.5 database that couples
real-time ground observations, near real-time satellite data and
meteorological reanalysis data, and operational simulations
from the WRF/CMAQ modeling system to provide PM2.5
concentration data that are updated in a timely manner. Based
on a two-stage machine learning model and gap-filling method,
TAP provides daily full-coverage PM2.5 concentrations at a
spatial resolution of 10 km in near real time. All the data are
publicly available for sharing with the community.
Our work is subject to some limitations. First, our near real-

time PM2.5 products rely on the near real-time updates of all
the input data (except for the land use, population and
elevation data, which have update frequencies of yearly or
longer). Delays in any of these data sets would influence the
updates of our PM2.5 data. Second, although we believe that
the long-term spatial and temporal patterns of PM2.5
concentrations prior to 2013 are reliable due to the
reasonableness of the input data, the uncertainties in PM2.5
on a daily scale are still larger than the daily PM2.5 estimates
after 2013. Third, the TAP PM2.5 concentrations over the
northwestern region dominated by the dust component tend
to be underestimated, because MODIS AOD over bright
surface (e.g., desert) are reported to have larger uncertainties
compared to ground measurements51,52 and the CMAQ PM2.5
simulations underestimated dust concentrations severely.10

Finally, previous studies have shown that using 1 km AOD
estimates from the Multi-Angle Implementation of Atmos-
pheric Correction (MAIAC) algorithm would improve the
model performance, as a finer resolution would result in better
correspondence between the AOD and PM2.5.

48 However,
building near real-time models at 1 km would cause
exponential increases in the required computing resources
and storage. Therefore, we choose the 10 km PM2.5 data as our
first step for the TAP database.

In the future, we will continue to improve our methods and
provide more air pollutant species and finer spatial resolution
data. Accordingly, we will build the TAP database into a near
real-time database of multiple air pollutants at different spatial
and temporal resolutions based on multiple data sources.
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