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New challenges are emerging in fine-scale air quality modeling in China due to a lack of high-resolution
emission maps. Currently, only a few emission sources have accurate geographic locations (point
sources), while a large part of sources, including industrial plants, are estimated as provincial totals (area
sources) and spatially disaggregated onto grid cells based on proxies; this approach is reasonable to some
extent but is highly questionable at fine spatial resolutions. Here, we compile a new comprehensive point
source database that includes nearly 100,000 industrial facilities in China. We couple it with the frame of
Multi-resolution Emission Inventory for China (MEIC), estimate point source emissions, combine point
and area sources, and finally map China’s anthropogenic emissions of 2013 at the spatial resolution of
3000�3000 (~1 km). Consequently, the percentages of point source emissions in the total emissions increase
from less than 30% in the MEIC up to a maximum of 84% for SO2 in 2013. The new point source-based
emission maps show the uncoupled distribution of emissions and populations in space at fine spatial
scales, however, such a pattern cannot be reproduced by any spatial proxy used in the conventional emis-
sions mapping. This new accurate high-resolution emission mapping approach reduces the modeled
biases of air pollutant concentrations in the densely populated areas compared to the raw MEIC inven-
tory, thus improving the assessment of population exposure.

� 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Surface emissions are a fundamental input for chemical trans-
port models (CTMs) to solve the continuity equation [1], and the
quality of emissions data is one of the key factors controlling the
model performance. The simulation of air pollutants, especially
short-lived species (e.g., aerosol [2] and ozone [3,4]) whose con-
centrations vary considerably across space, particularly relies on
the accuracy of emission distributions [5,6]. Recently, the emerging
demand for kilometer-scale air pollution maps for human and
ecosystem health assessments has stimulated the need for devel-
oping accurate high-resolution emission maps towards fine spatial
resolutions.
The emissions data used by CTMs are primarily compiled using
a bottom-up approach, which estimates emissions by multiplying
activity data by emission factors and shapes the emissions totals
to the gridded format. Point sources distribute their emissions onto
the grid where they are located, while area and line sources esti-
mated at the state- or city-scale usually allocate emissions based
on other gridded proxies, such as population, nighttime light, and
road network, with the assumption that the spatial intensity of a
proxy approximates emissions distribution in space. However, this
assumption is highly questionable, and the selection of spatial
proxies is rather arbitrary in practice over regions without detailed
local information of emission distributions, which causes large
uncertainties in kilometer-scale emissions mapping [6,7].

To constrain the uncertainties, it is essential to increase the pro-
portion of point sources and reduce the arbitrary use of the proxy-
based emissions distribution method. However, only a small share
of anthropogenic emissions is currently estimated as point sources
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in bottom-up inventories. Most industrial emission sources, except
for very few high energy-consuming plants (e.g., power plants and
metal smelters) [8,9], are distributed onto grids based on spatial
proxies, which introduce large uncertainties into gridded emission
maps, illustrated by the satellite imagery that plenty of local emis-
sions hotspots are missing in such bottom-up gridded inventories
[10–13].

High-resolution emissions inventories built upon sufficient
point sources are scarce in China, the largest emitter of anthro-
pogenic pollutants worldwide. The widely used emissions inven-
tory, the Multi-resolution Emission Inventory for China (MEIC)
developed by the same research team of this study, includes only
coal-fired power plants as point sources due to the lack of data
availability when it was initially built. The MEIC data achieve good
performance in regional CTMs running at tens of kilometers but
have difficulty fitting fine-scale modeling, such as in cities [6],
which has to be complemented by local inventories [14]. We have
been working continuously on new methods to improve the MEIC
model by including more industrial infrastructures and have suc-
cessfully applied the methods to several provinces [15] and
national carbon accounting [16].

Herein, this study extends the methods explored by our previ-
ous studies and develops a new comprehensive approach to char-
acterize emission distribution patterns at kilometer resolutions
and to evaluate the resultant performance in CTMs. For the first
time, we generate 3000�3000 (~1 km) emissions maps of China’s
anthropogenic sources for 2013, which are denoted as the Multi-
resolution Emission Inventory for China - High Resolution (MEIC-
HR) in this study. Several newly available state-of-the-art point
source datasets are harmonized to form a comprehensive database
that includes nearly 100,000 industrial infrastructures in China.
We merge all the data streams of point, area, and line sources
under the framework of the MEIC model and generate emissions
maps of MEIC-HR for the nested domains of a CTM, which is finally
used to evaluate the accuracy of high-resolution emissions data
and examine the effect on atmospheric chemistry modeling and
aerosol exposure assessment.
2. Data and methods

2.1. Emissions model framework

We combine three industrial datasets (Text S1 online) that pro-
vide facility- or factory-level data to generate a synthesized indus-
trial point-source database for China. The core concept of this
study is to couple this new point-source database with the MEIC
model. The power, industrial combustion, and industrial process
sources are all estimated as point sources, and the other source
sectors are area sources estimated at the province- or county-
level by the MEIC emission model. Total emissions are merged
and disaggregated to 3000 � 3000 using the coordinates of point
sources and the spatial proxies for nonpoint sources. Table S1
(online) summarizes the data processing chain.

We have two principles for the coupling of the point source
database with the MEIC model. First, we use the activity data in
MEIC as a total constraint. The summation of activity data of all
the point sources tends to be slightly underestimated because
small factories are possibly omitted in the factory-level statistics.
The MEIC model is built upon provincial statistics, accounting for
the balance among production, consumption, import, export, and
stock change of energy and industrial products, which are consid-
ered more accurate. We scale the activity data of each source cov-
ered by the point source database to be consistent with the MEIC
national totals. Second, the facility-level database has a higher pri-
ority to provide calculation parameters related to emission rates,
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such as emission factors and pollution control efficiency, which
reflect the heterogeneous emission levels differing considerably
from one another. The province-level emission rates in the raw
MEIC are not used unless such parameters are not available in
the point source database.
2.2. Point sources

The emissions from each industrial facility are estimated using

Es ¼ A� EFs �
Y
n

1� gn;s

� �
; ð1Þ

where s represents pollutants, n represents pollution control
devices, E is the emissions value (g), A is the activity data (kg), EF
is the emissions factor (g kg�1), and g is the pollution removal effi-
ciency (%). The pollutants estimated in this study include sulfur
dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), non-
methane volatile organic compounds (NMVOCs), ammonia (NH3),
carbon dioxide (CO2), and particulate matter (PM), including black
carbon (BC) and organic carbon (OC).

The EFs of SO2 and PM from coal combustion are estimated with
[17]

EFSO2 ¼ 2� SCC � 1� Srð Þ; ð2Þ

EFPM;d ¼ ACC � 1� Arð Þ � f d; ð3Þ
where d represents the aerodynamic diameter of PM (2.5 or 10 lm),
SCC (ACC) is the sulfur (ash) content of coal (g kg�1), Sr (Ar) is the
mass fraction of sulfur (ash) retained in the bottom ash, and fd is
the mass fraction of PM with an aerodynamic diameter smaller than
d.

Three industrial point-source datasets (Text S1 online) are com-
bined to provide the parameters described in the above equations.
The Environmental Statistics (ES) database and the 1st National
Census on Pollution Sources (NCPS) are harmonized to establish
a complete database that includes more than 90,000 industrial
facilities and contains the information on the geographic coordi-
nates, time each plant came online, industrial category, combus-
tion/manufacturing technology, production capacity, industrial
product output, fuel consumption, coal sulfur and ash content,
and pollution control devices. The field investigation data collected
by the Ministry of Ecology and Environment (MEE) are also used to
provide information on end-of-pipe pollution control devices. The
data harmonization method is described in Text S1 (online) and
in our previous studies [6,15,16].

The point sources are mapped to the MEIC source classification
and incorporated into the MEIC model to replace the correspond-
ing emission sources. The activity data A of each facility is derived
from the point source database with the summation of national
totals scaled to the MEIC data (e.g., the scaling factor is 1.02 for
the coal combustion in the industrial sector). The EFs of SO2 and
PM are estimated using the unit-level SCC and ACC and the
technology-specific parameters Sr, Ar, and fd from the MEIC. The
EFs of other species and the pollution removal efficiency g are
derived from the source- and technology-based database in the
MEIC model combined with the information of fuel and technology
types of each industrial site.
2.3. Nonpoint sources

The nonpoint sources are calculated by the MEIC model, with
the on-road emissions estimated at the county level [18] and the
other sources estimated at the province level [19]. The provincial
emissions of each area source are estimated using



B. Zheng et al. Science Bulletin 66 (2021) 612–620
Es ¼ A�
X
m

Xm � EFm;s �
X
n

Cm;n � 1� gn;s

� �� � !
; ð4Þ

where s represents the pollutant, m represents combustion or man-
ufacturing technologies, n represents the pollution control technolo-
gies, A is the activity data of provincial totals (kg), EF is the emissions
factor (g kg�1), X and C are the mass fraction of A using one specific
technology, and g is the pollution removal efficiency (%). The EFs of
SO2 and PM are estimated using Eqs. (2) and (3). The provincial
parameters in Eqs. (2)–(4) are drawn from a wide range of statistical
reports and literature. The activity data of fuel burnt and solvents
and products used are collected from various statistical yearbooks
with necessary adjustments on rural energy consumption based
on field surveys [20]. X and C are derived from the technology turn-
over models in the MEIC, which have been tuned to reflect historical
trends and drivers [21–25]. TheMEE investigation data are also used
to adjust the technology turnover models [19]. The EFs of different
species and the g of different technologies primarily rely on local
measurements [26] or are compiled from previous inventories
[21,23,27–29] when local data are not available.

The on-road emissions are estimated using the county-level
activity data and emissions factors [18]. The activity data and tech-
nology distributions are modeled for each county to reflect the
influence of socioeconomic development on vehicle ownership
and fleet turnover rates. The emissions factors that are sensitive
to ambient conditions are modeled by an emission factor model
combined with county-level meteorological data. Please refer to
our previous paper [18] for details.
2.4. Emissions mapping

The point source database has the geographic coordinates of
each factory. To ensure that the coordinates are accurate, we visu-
ally check the locations of large point sources through Google Earth
and fix the wrong coordinates, which include all of the power
plants, iron and steel plants, cement plants, glass plants, and the
other industrial facilities that account for more than 90% of the
remaining industrial emissions in 2013. The nonpoint sources are
spatially downscaled using source-specific spatial proxies
(Table S1 online) via two steps: (1) disaggregation from province
to county and (2) distribution from county to 3000�3000 grid cells.
The spatial proxies used include the industrial GDP, population
density, road network, and other proxies associated with the
related sources [6]. The emissions of each point source are put into
the grid cell that contains its coordinates and combined with the
nonpoint sources to generate total emission maps.
2.5. Chemical transport model

We use Community Multiscale Air Quality Version 5.2
(CMAQv5.2) to perform the modeling, with the meteorological
fields generated by Weather Research and Forecasting Version
3.9 (WRFv3.9). We use nested model domains with horizontal res-
olutions of 36, 12, and 4 km, which cover the Chinese mainland,
central and eastern China, and the four most densely populated
regions (Fig. S1 online), respectively. We conduct 13-month simu-
lations from Dec. 2012 to Dec. 2013, with the first month as the
model spin-up. Two sets of simulations are performed separately
using the new high-resolution MEIC-HR and raw MEIC emissions
maps to represent China’s anthropogenic emissions. Emission
magnitudes of the MEIC are scaled consistently with our new
inventory MEIC-HR by the source sector. The other configurations
of the modeling system follow our previous studies [6,14,30]. The
modeled annual and seasonal daily average concentrations of
SO2, nitrogen dioxide (NO2), ozone (O3), and PM2.5 within all of
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the nested domains are evaluated against ground-based in situ
measurements over China (http://106.37.208.228:8082/).

3. High-resolution emissions mapping

3.1. Spatial distribution pattern

China’s anthropogenic emissions in 2013 are estimated to be 26.1
Tg SO2, 27.8 Tg NOx, 170.4 Tg CO, 28.5 Tg NMVOCs, 10.6 Tg NH3,
10350.5 Tg CO2, 11.8 Tg PM2.5, 15.8 Tg PM10, 28.5 Tg TSP, 1.6 Tg
BC, and 2.9 Tg OC. These values are quite close to theMEIC estimates
[19], with a slight difference of less than 5% for gaseous species and
less than 10% for particulate matter, both of which are within the
typical uncertainty range of bottom-up emissions inventories. The
emissions estimates are highly consistent because the MEIC model
has referred to the MEE investigation to tune technology turnover
models and pollution control levels in the industry sector.

We present the spatial distribution of all the point sources with
their emissions of SO2 (Fig. 1), NOx (Fig. S2 online), PM2.5 (Fig. S3
online), and CO2 (Fig. S4 online) in maps. The point sources are
unevenly distributed in space and are primarily located in East
and South China. Their emissions span a wide range across orders
of magnitude (dot sizes in figures), and a small number of large
point sources dominate the total emissions budget. The top 1000
plants contribute more than half of the industrial emissions of all
the species. These emissions hotspots mainly come from the top
five industrial categories (dot colors in Figs. 1 and S2–S4 online),
which account for 83%, 89%, 89%, and 90% of the total industrial
emissions of SO2, NOx, PM2.5, and CO2, respectively, and contribute
87%–94% of the emissions of other species. These five industrial
categories emit 13%–72% of the total emissions. Electricity and
heat power plants and the manufacturers of ferrous metals are
major emitters of SO2 and NOx, and the manufacturers of nonmetal
mineral products contribute the most to PM2.5.

We combine the point sources with nonpoint sources and gen-
erate 3000�3000 emission maps. Fig. 2 shows the gridded maps of
SO2 emissions and Figs. S5–S7 (online) present the emission maps
of NOx, PM2.5, and CO2, respectively. These 3000�3000 emission maps
resolve the spatial variation in emission distributions at local
scales, identifying plenty of hotspots that occupy small areas and
illustrate sharp emissions gradients. Most of these emissions hot-
spots are large cities in China. We focus on the city that emits
the most SO2 in 2013 and zoom in on the map to simultaneously
show its total emissions (Fig. 2c), nonpoint sources (Fig. 2d), and
point sources (Fig. 2e).

The selected city is Tangshan, which produces the most iron and
steel in China. Its SO2 emissions in 2013 are estimated to be 407
Gg, with 375 Gg SO2 emitted from point sources. The nonpoint
sources account for only 32 Gg SO2, and since the nonpoint source
emissions mainly come from residential sources that are down-
scaled based on the population distribution map, the spatial pat-
tern of nonpoint source emissions mainly follows the population
distributions (Fig. 2d) and the spatial extent of urban built-up area.
In contrast, industrial point sources (e.g., iron and steel plants) are
located outside urban areas (Fig. 2e) to reduce population exposure
to air pollutants. The total SO2 emissions within Tangshan city are
consequently uncoupled from the spatial distribution of popula-
tion in space, with less than 10% of emissions allocated at the
urban center but more than 90% of emissions located outside,
which generates hot emission pixels that are widely distributed
in the suburban and rural areas (Fig. 2c).

3.2. Role of point sources

The most significant improvement compared to MEIC is the
increased percentage of point sources, especially for the pollutants

http://106.37.208.228%3a8082/
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Fig. 1. Point sources of anthropogenic SO2 emissions. Each dot represents an industrial point source with its SO2 emissions (dot size) and the industrial category (dot color).
The industrial categories shown here are the top five emitters of SO2 in the industry sector in 2013.
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dominated by industrial combustion sources (Fig. 3). The percent-
ages of point source emissions increase from a maximum of 30% of
the total emissions in the MEIC to 84% for SO2, 77% for TSP, 71% for
CO2, 62% for PM10, 58% for NOx, 55% for PM2.5, 41% for CO, 27% for
BC, 17% for NMVOCs, and 15% for OC in the MEIC-HR. The species
SO2, CO2, NOx, and PM reveal the largest growth in the point
sources because they are primarily emitted from industrial com-
bustion sources, which all become point sources in this study.
TSP and PM10 observe larger increases than PM2.5 because the
industrial sources emit more coarse particles than fine particles.
The other species present moderate improvements in the share
of point source emissions because they are also contributed by res-
idential (e.g., CO, BC, and OC), transport (e.g., CO and NMVOCs), or
fugitive sources such as solvent use (e.g., NMVOCs), which are cur-
rently nonpoint sources.

The increase in point source emissions is evident not only for
the whole country (Fig. 3) but also for most of the Chinese cities
(Fig. S8 online). Half of China’s SO2 (Fig. S8a online), NOx

(Fig. S8b online), PM2.5 (Fig. S8c online), and CO2 (Fig. S8d online)
emissions are distributed in the cities where the percentages of
point sources reach at least 87%, 59%, 56%, and 73%, respectively,
which are substantially improved from the raw MEIC levels of
20% for SO2, 26% for NOx, 6% for PM2.5, and 31% for CO2. Since
industrial infrastructures dominate city emissions of these species,
we can largely reduce dependence on the spatial proxies to down-
scale city emissions to fine-scale grid cells, which indeed improves
the spatial accuracy of emission distributions within a city.

We examine the influence of adding more point sources on the
spatial distribution of emissions by comparing the MEIC and the
MEIC-HR. To eliminate the effects of slightly different magnitudes,
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we scale the MEIC emissions consistent with the MEIC-HR esti-
mates by sector and by species. We calculate the spatial correlation
coefficient and the sum of absolute difference of gridded emissions
at the horizontal resolutions spanning from 0.05� to 2� (Table S2
online). The correlation coefficient is lower than 0.5 for most of
the species at 0.05�, while it increases larger than 0.5 and 0.9 at
0.25� and 2�, respectively, with the summed absolute differences
of emissions declining simultaneously. This result suggests that
emission distribution patterns are broadly consistent between the
MEIC-HR and theMEIC at coarse spatial resolutions, while the emis-
sion patterns at fine resolutions diverge after adding more point
sources in the MEIC-HR, which is more evident for the species that
include higher percentages of point sources (e.g., SO2 and PM).

To elucidate how those additional point sources affect emis-
sions mapping, we perform a joint analysis of emissions and pop-
ulation densities at different resolutions (Fig. 4). Overall, the MEIC-
HR tends to allocate fewer emissions to densely populated grid
cells than the MEIC. The most densely populated areas (i.e., urban)
that contribute 25% of SO2 in the MEIC now account for only 13% of
SO2 in the MEIC-HR at the resolution of 0.05� (Fig. 4a). The reduced
emissions are reallocated to the less populated grid cells in subur-
ban and rural areas. The turning point for SO2 at 0.05� is approxi-
mately 1700 people km�2 (Fig. 4b), below which the grid cells in
the MEIC-HR tend to have higher emissions than the MEIC. The
redistribution of emissions is also evident for the other pollutant
species dominated by point sources such as NOx (Fig. S9a, d online),
PM2.5 (Fig. S9b, e online), and CO2 (Fig. S9c, f online), and the turn-
ing points of population densities that reflect the transition of dif-
ferences in emission spatial distributions between MEIC-HR and
MEIC agree with that of SO2.
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The MEIC-HR inventory allocates more industrial emissions to
suburban and rural areas because the industrial plants are distant
from populations in urban areas (see Tangshan in Fig. 2). With the
emissions spatially disaggregated based on population densities,
the MEIC industrial emissions are overestimated in urban areas.
This systematic bias cannot be reduced by using other spatial prox-
ies because the MEIC-HR emissions show low spatial correlation
with the gridded datasets of population, road network, and night-
time light at high spatial resolutions (Figs. 4c and S10 online). None
of these commonly used proxies can represent the spatial decou-
pling of industrial emissions and populations at fine scales. When
the size of grid cells increases enough to include both urban and
suburban areas, those proxies show a high spatial correlation with
the MEIC-HR emissions. Therefore, the differences between the
MEIC and the MEIC-HR become smoother at coarse resolutions.
4. Impacts on air quality modeling

4.1. Modeling biases compared to observations

Fig. 5 evaluates the WRF-CMAQ simulations driven by the MEIC
and MEIC-HR emissions data. The evaluation focuses on all of the
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cities covered by the four 4 km domains (Fig. S1 online). The
annual and seasonal daily average concentrations of air pollutants
modeled at the 36, 12, and 4 km domains are separately compared
with ground-based observations. Theoretically, high-resolution
grid cells should be more consistent with surface measurement
sites due to reduced representation errors. However, we find that
the increased model resolutions tend to increase simulation biases,
especially using the MEIC inventory (blue bars). Compared to
ground observations, the normalized mean biases of modeled
SO2, NO2, O3, and PM2.5 based on MEIC emissions data increase
from 37% to 212%, 4% to 46%,�9% to �35%, and�2% to 27%, respec-
tively, with the horizontal resolutions of the model domain
increasing from 36 to 4 km. The root mean square error of the
modeled pollutant concentrations also increases from the 36 km
simulation to the 4 km simulation (Table S3 online).

The modeling with the MEIC-HR inventory matches better with
ground-based observations than that with the MEIC inventory. The
normalized mean biases (red bars) are 77% for SO2, 31% for NO2,
�28% for O3, and 5% for PM2.5 at the horizontal resolution of
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4 km, much smaller than the results of the MEIC-based modeling.
The root mean square errors are also smaller in the MEIC-HR-based
simulations (Table S3 online). Since emissions totals are scaled
consistently before running the WRF-CMAQ model, the larger
biases of the MEIC-based simulations at fine spatial resolutions
are mainly caused by errors in the emission mapping. Given that
the observation data used here are mostly measured in urban
areas, the above evaluation results suggest that the urban emis-
sions in the MEIC model are probably overestimated by a large
extent. Such errors are reduced by our new point-source-based
emissions maps, which reduce the simulation biases of WRF-
CMAQ. The remaining biases of the MEIC-HR-based simulations
at the 4 km domains are probably due to uncertainties in physical
and chemical processes of the meteorological and air quality
models.

Figs. S11–S14 (online) present station-scale model evaluation
results, which include spatial correlations between modeled and
observed average concentrations at the annual (Fig. S11 online)
and seasonal (Fig. S13 online) scales and slope of regression lines
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between modeled and observed values (Figs. S12 and S14 online).
Among the 371 observational stations, spatial correlations
between modeled and observed annual average concentrations at
4 km domains improve from 0.37 to 0.56 for SO2, from 0.59 to
0.61 for NO2, from 0.58 to 0.67 for PM2.5, and from 0.26 to 0.32
for O3 comparing the MEIC-based to MEIC-HR-based simulations.
The slopes of fitted lines between modeled and observed values
change from 1.87 to 1.45 for SO2, from 1.34 to 1.19 for NO2, from
1.16 to 1.10 for PM2.5, and from 0.21 to 0.22 for O3. The improved
spatial correlations and the slopes closer to 1 at 4 km domains both
suggest that the MEIC-HR emission inventory has improved the
simulations of air pollutant spatial distributions at the local scales.
The other evaluation results that focus on seasonal means
(Figs. S13 and S14 online) and over 36 and 12 km domains also
confirm the improved WRF-CMAQ model simulations based on
the MEIC-HR emission inventory.

Short-lived pollutants show high concentrations near sources
but decay rapidly with distance, which is highly correlated with
emission sources distributions in space. The decoupling of emis-
sions and population introduces large errors in proxy-based emis-
sion maps, such as MEIC, and thus affects the subsequent modeling
of short-lived species. The influence of emission mapping errors on
CTM simulations can be reduced by using coarse-resolution model
grids because the emissions are averaged over a large area and only
a small part of pollutants can be transported out of the coarse grid
cell where they are emitted. The MEIC-based modeling results
show much smaller normalized mean biases at 36 km (�9% to
37%) than at 12 km (�26% to 153%) and at 4 km (�35% to 212%)
(Fig. 5) because the 36 km model grids almost eliminate errors in
emission mapping, while the 4 km resolution grids reveal all of
these errors.

The point-source-based MEIC-HR inventory successfully repre-
sents the decoupling of emissions and population in space and thus
constrains the modeling bias at fine spatial scales. The remaining
biases in the MEIC-HR inventory are caused by emissions sources
that are still spatially disaggregated using proxies, such as residen-
tial stoves (SO2), transport (NOx), or fugitive solvent use (NMVOCs).
Emissions from these nonpoint sources are estimated using
provincial-level emission parameters and are allocated to grid cells
in space based on population distributions, which tend to overesti-
mate the emissions and the modeled pollutant concentrations in
urban areas at 4 km domains (Fig. 5). To further reduce modeling
biases at fine spatial scales, the percentage of point sources for
all of the species and source sectors needs to be continuously
improved.

4.2. PM2.5 exposure assessment

The four 4 km domains (Fig. S1 online) include 0.8 billion peo-
ple, who account for 62% of China’s total population. The
population-weighted annual average PM2.5 of these 0.8 billion peo-
ple are estimated as 66.0, 74.2, and 70.3 lg m�3 in the 36, 12, and
4 km simulations, respectively, with the MEIC inventory. The
MEIC-HR-based simulations estimate slightly lower values of
64.3, 70.7, and 65.4 lg m�3 at 36, 12, and 4 km, respectively. The
largest difference is found at the 4 km resolution, where the
MEIC-HR-based estimate is 7% lower than the MEIC estimate.

We analyzed how human exposure to PM2.5 varies with popula-
tion density (Fig. 6). The simulations using MEIC (Fig. 6a) and
MEIC-HR (Fig. 6b) both suggest that the population-weighted
PM2.5 concentrations increase linearly with the population density
increasing to 500 people km�2, remain at approximately 70 lg m�3

between 500 and 2000 people km�2, and increase again when the
population density gets larger. The major discrepancy between the
two simulations occurs at grid cells with more than 2000 people
km�2 (Fig. 6c). The population-weighted PM2.5 reaches 132 lg m�3
618
in the most densely populated areas in the MEIC-based 4 km sim-
ulations, while the largest concentration estimated by the MEIC-
HR-based simulations is only 95 lg m�3 in the 4 km domain.

In addition, the highest concentration in the MEIC-HR simula-
tions is not found in the most densely populated areas, unlike
the MEIC-based simulations. This result is due to a slight decrease
in modeled PM2.5 when the population density is larger than
approximately 10,000 people km�2 (Fig. 6b), which reflects the
decoupling of emissions and population at fine spatial scales, espe-
cially in areas with high numbers of people. Over the densely pop-
ulated urban areas, the MEIC-based simulation estimates 46%
higher population-weighted PM2.5 than the MEIC-HR (equivalent
to 42 lg m�3) at the 4 km resolution. These results suggest that
we may overestimate the population exposure to PM2.5 by nearly
50% if using the proxy-based emission maps to perform
kilometer-scale air quality modeling in the densely populated
urban areas.
5. Implications for future research

The accuracy of air quality modeling at kilometer scales is quite
sensitive to the method of how we map emissions in space. If we
do not have enough information on point sources, some spatial
proxy must be used to disaggregate emissions in space. Although
it is reasonable to some extent, we must evaluate whether this
method fails to represent emission distribution patterns at kilome-
ter scales, which could introduce large errors into air quality mod-
eling. Our regional study over China suggests that the proxy-based
emission maps worsen the WRF-CMAQ model performance at
4 km compared to that at 36 km because such inventory tends to
misallocate the industrial emissions that are located in suburban
and rural areas to the densely populated urban areas. With the
proxy-based emission maps, it would be safer to run CTMs at coar-
ser resolutions of tens of kilometers to achieve a satisfactory model
performance.

Fixing this problem requires a point-source-based emissions
inventory with facility-level emission estimates and exact geo-
graphic coordinates. Through integrating industrial point sources,
we map China’s anthropogenic emissions at a horizontal resolution
of 1 km, which adequately represents the emissions hotspots dis-
tributed widely in suburban and rural areas and improves the
emission mapping accuracy over densely populated urban areas.
Modeling with this new point-source-based inventory reduces
the bias in the modeled urban concentrations of air pollutants at
a resolution of 4 km and improves the assessment of population
exposures to ambient aerosols. Such a new high-resolution inven-
tory will allow finer-scale simulations than the model community
ever did before and will also facilitate the comparison with the
satellite-constrained city and point source emissions, which are
progressing rapidly towards kilometer-scale resolutions [31,32].

To further improve the accuracy of emission mapping and air
quality modeling, the species that still have few point sources
(e.g., NH3 and NMVOCs) will need more attention from emissions
inventory developers. These species are mainly generated by
sources that are difficult to treat as point sources (e.g., industrial
solvent use, residential, and agriculture) due to a lack of data avail-
ability. We need more unit-level information on industrial solvent
use and storage facilities, residential and agricultural infrastruc-
tures, such as household cookstoves and livestock farms. It is valu-
able to conduct a sample survey through field research to
characterize the activity levels and emission distribution patterns
[20,33]. Another possibility is to integrate the top-down informa-
tion into the bottom-up estimated emission maps. Satellite-
observed NH3 columns have been used to quantify NH3 emissions
from large point sources using the oversampling technique and the
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Gaussian fitting model [12,34]. Such a method can identify the
missing point sources in bottom-up inventories, and a combination
of bottom-up inventories with satellite-derived point sources has
the potential to achieve a more comprehensive emission map.
These high-resolution satellite observations, as well as ground-
based dense air quality sensor networks, can also be combined
with fine-scale chemical transport models to evaluate the spatial
distribution patterns of surface emissions at a fine spatial scale,
which could support the development and refinement of
kilometer-scale emission inventories in the future. More detailed
statistics and observation constraints should be involved in parallel
to further improve the bottom-up emission model framework
towards higher spatial resolutions.
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