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a b s t r a c t

China pledges to reach a peak in CO2 emissions by 2030 and to make its best efforts to reach this peak
earlier. Previous studies have paid much attention to the total amount of China’s CO2 emissions, but
usually only one dataset is used in each evaluation. The pledged national reduction target is adminis-
tratively divided into provincial targets. Accurate interpretation of province-level carbon emissions is
essential for making policies and achieving the reduction target. However, the spatiotemporal pattern of
provincial emissions and the associated uncertainty are still poorly understood. Thus, an assessment of
province-level CO2 emissions considering local statistical data and emission factors is urgently needed.
Here, we collected and analyzed 7 published emission datasets to comprehensively evaluate the
spatiotemporal distribution of provincial CO2 emissions. We found that the provincial emissions ranged
from 20 to 649 Mt CO2 and that the standard deviations (SDs) ranged from 8 to 159 Mt. Furthermore, the
emissions estimated from provincial-data-based inventories were more consistent than those from the
spatial disaggregation of national energy statistics, with mean SDs of 26 and 65 Mt CO2 in 2012,
respectively. Temporally, emissions in most provinces increased from 2000 to approximately 2012 and
leveled off afterwards. The interannual variation in provincial CO2 emissions was captured by provincial-
data-based inventories but generally missed by national-data-based inventories. When compared with
referenced inventories, the discrepancy for provincial estimates could reach �57%e162% for national-
data-based inventories but were less than 45% for provincial-data-based inventories. Using compre-
hensive data sets, the range presented here incorporated more factors and showed potential systematic
thropogenic Carbon dioxide; EDGAR, Emissions Database for Global Atmospheric Research; PKU, Peking University-
ina; NJU, Nanjing University-CO2; CHRED, China High Resolution Emission Database; CEADs, China Emission Accounts
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n Climate Change.
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biases. Our results indicate that it is more suitable to use provincial inventories when making policies for
subnational CO2 reductions or when performing atmospheric CO2 simulations. To reduce uncertainties in
provincial emission estimates, we suggest the use of local optimized coal emission factors and valida-
tions of inventories by direct measurement data and remote sensing results.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Anthropogenic CO2 emissions from fossil fuel combustion and
industrial processes are primarily responsible for global warming
by increasing atmospheric CO2 concentrations (Stocker et al., 2013).
Over 2008e2017, the mean global fossil CO2 emissions (FFCO2)
were 9.4 ± 0.5 Gt C yr�1 (Le Qu�er�e et al., 2018). Currently, stabilizing
the concentration of atmospheric CO2 has become one of the most
urgent challenges for humanity (Ballantyne et al., 2018). Efforts for
climate change mitigation are making progress after the imple-
mentation of the Paris Agreement, which helps to regulate the total
amount of CO2 emitted into the atmosphere to limit warming to
below 2 �C in the long term (Rogelj et al., 2016; Schleussner et al.,
2016). China plays a crucial role in climate change mitigation due
to its large contribution (~30%) to global total CO2 emissions (Le
Qu�er�e et al., 2018). The Chinese government pledges to reach a
peak in its emissions by 2030 and has established a set of carbon
emission reduction actions in the 13th Five-Year Plan (NDRC, 2016).
Therefore, an accurate assessment of China’s CO2 emissions is a
vital step towards formulating emission reduction policies.

More efforts have been made to estimate the amount of CO2
emissions at the national scale _ENREF_19(Guan et al., 2018; Liu
et al., 2013; Shan et al., 2017; Wang et al., 2014) and from key
emitting sectors in China (Guo et al., 2014; Liu, F. et al., 2015; Shan
et al., 2018a; Shan et al., 2016b; Zheng et al., 2014). However, large
uncertainty still exists due to the discrepancy between emission
factors and energy statistics used by different inventories (Berenzin
et al., 2013; Hong et al., 2017; Zhao et al., 2012). The quality of
energy statistics is considered the largest contributor to the accu-
racy of emission estimates (Guan et al., 2012). The emissions esti-
mated from provincial energy statistics were generally higher than
those from national statistics (Guan et al., 2012; Shan et al., 2016a).
The difference is mainly caused by the inconsistency between na-
tional and provincial energy statistics. The energy-induced uncer-
tainty could be attributed to the different statistical standards,
inadequacies in China’s statistical system and artificial factors
(Hong et al., 2017; Shan et al., 2016a). Furthermore, the discrepancy
in energy data could result in a substantial effect on the emission
trends (Hong et al., 2017). However, we still have a limited under-
standing of the influence of energy statistics differences on the
spatiotemporal distribution of CO2 emissions.

The carbon emissions in China have significant regional het-
erogeneity due to differences in social conditions, economic
development, urbanization level, industry structure, and trade
openness among regions (Bai et al., 2014; Dong and Liang, 2014; Xu
and Lin, 2016). To interpret the differentiated contributions of re-
gions to CO2 emissions, several researchers have focused on
provincial-level carbon emissions in recent years (Bai et al., 2014;
Du et al., 2017; Shan et al., 2016a). This analysis can improve the
understanding of the spatial patterns of emissions and provide
assistance in allocating different responsibilities and setting emis-
sion targets (Shao et al., 2018). To date, provincial-level CO2 emis-
sion estimates have been developed on the basis of provincial or
national energy statistics. Verified provincial statistics have been
shown to better agree with satellite observations (Akimoto et al.,
2006; Zhao et al., 2012). Emissions based on national statistics
were downscaled from national totals to province-level values ac-
cording to provincial fractions or spatial proxies (Asefi-Najafabady
et al., 2014; Zhao et al., 2012), such as PKU-CO2 (Wang et al., 2013)
and the Carbon Dioxide Information Analysis Center (CDIAC).
However, disaggregating national emissions to the subnational or
grid level using population and nightlightmaps as a proxy results in
spatial biases in allocating emissions within a country (Asefi-
Najafabady et al., 2014; Rayner et al., 2010), especially in China
(Liu et al., 2013; Wang et al., 2013). Therefore, quantitative evalu-
ation of emissions uncertainty caused by different energy statistics
and different proxies at the subnational level is urgently needed,
and the evaluation of provincial emissions will provide data that
are needed for local reductions and mitigations.

This study is a first attempt to comprehensively evaluate pro-
vincial emission estimates using the most up-to-date inventories.
The purposes were to estimate the magnitude and uncertainty or
differences in provincial CO2 emissions based on seven datasets,
identify the commonalities and disparities of provincial carbon
emissions in terms of spatiotemporal variations among different
estimates, and thus provide support for policymakers to develop
region-oriented emissions reduction policies. This study also indi-
cated that national-level data-based inventories may not be suit-
able for local policy making. In the following sections, we first
introduce the data and methods (Sections 2.1 and 2.2) and then
present the results in the following 5 sections (Sections 3.1 - 3.5):
the provincial emissions and standard deviations (SDs); temporal
emissions changes from 2000 to 2018; fractions of the high emit-
ting provinces; correlations of inventories’ estimates at the pro-
vincial level; and differences between the estimates and the
referenced inventories. Third, we discuss the root causes (activity
data at provincial and national levels, coal emission factor and
spatial proxies) that contribute to the differences and implications
for inventory use and improvement (Sections 4.1 - 4.4).

2. Data and methods

2.1. Data

The evaluation of provincial-level CO2 emissions was con-
ducted from 7 published CO2 emission estimates based on na-
tional and provincial energy statistics (Table S1). Specifically, the
global fossil fuel and industrial processes CO2 emission datasets
included the year 2018 version of ODIAC (ODIAC2018), version
v5.0 of EDGAR (EDGARv5.0, https://edgar.jrc.ec.europa.eu/
overview.php?v¼booklet2019), and version 2 of PKU-CO2
(PKUeCO2-v2), which are developed from the national energy
statistics of the International Energy Agency (IEA). The
provincial-statistics-based emission datasets were the data for
the years 2007 and 2012 from CHRED, version 1.3 of MEIC (MEIC
v1.3), NJU-CO2 and CEADs, which used provincial energy balance
sheets from China Energy Statistical Yearbook (CESY) activity
data. For detailed methods and key features of the total emission
estimates and spatial disaggregation, please refer to the Sup-
plementary Materials, Tables S2 and S3, and Han et al. (2020).

https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019
https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019
https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019
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Data for the year 2012 were used in spatial analysis since it was
the most recent year for all data sets.

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC)
is primarily based on country-level emission estimates for three
fuel types from the CDIAC and has used the BP Statistical Review of
World Energy for recent years (Oda andMaksyutov, 2011; Oda et al.,
2018). The Emissions Database for Global Atmospheric Research
(EDGAR) was developed by the European Commission’s Joint
Research Centre (JRC) based on IEA national statistics for fossil fuel
combustion sources and other international statistics as input ac-
tivity data under the guidelines of the Intergovernmental Panel on
Climate Change (IPCC) and technology-specific emission factors
(Crippa et al., 2019; Janssens-Maenhout et al., 2019). PKU-CO2
(PKU) was developed from the Peking University Fuel Inventories
(PKU-FUEL), which used a subnational disaggregation method
(SDM) based on the combustion rates for different fuel types
compiled at the global/national level and emission factors, and for
China, it used NBS provincial consumption fractions to spatially
distribute the IEA total energy consumption amount (Wang et al.,
2013). MEIC was developed by Tsinghua University using a
technology-based methodology built upon more than 700
anthropogenic sources and emission factors (Li et al., 2017; Liu, F.
et al., 2015; Zheng et al., 2018). NJU-CO2 was developed at Nanj-
ing University using a sectoral approach under the guidelines of the
IPCC (Liu et al., 2013; Wang et al., 2019). CHREDwas constructed by
enterprise-level point sources from the First China Pollution Source
Census (FCPSC) survey and used local emission factors compiled by
the NCCC (Cai et al., 2019; Wang et al., 2014). The CEADs were
calculated based on apparent energy consumption data and the
most up-to-date emission factors using the sectoral and reference
approaches under the guidelines of the IPCC (Guan et al., 2018;
Shan et al., 2016a).

Considering the differences in national and provincial energy
statistics, the 7 inventories were classified into two groups: one
includes ODIAC, EDGAR, and PKU, and the other includesMEIC, NJU,
CHRED, and CEADs. CHRED is based on the most comprehensive
enterprise-level data (1.5 million enterprises) from a national
pollution source census and regular pollution reporting systems in
China (Cai et al., 2019; Wang et al., 2014). The CEADs are based on
apparent energy consumption data and local optimized emission
factors that are similar to China’s fossil fuel quality based on 602
coal samples and 4243 coal mines (Liu, Z. et al., 2015). Therefore,
CO2 emissions calculated from CHRED and CEADs were used as a
reference to evaluate the estimates from other emission datasets.

2.2. Methods

These inventories were first extracted by provincial mask (in
shapefile format) from the National Geomatics Center of China
using ArcGIS 10.02 software (ESRI, 2012). To allocate the carbon
emissions with ArcGIS when a grid spans more than two provinces,
we first change the grid data into polygon (shapefile) format,
calculate the area fraction of the irregular shape that falls within a
certain province, and apply this fraction to the total emissions of
this polygon; this result is assumed to be the emissions allocated to
this province. This method produces a difference of 4% with respect
to the NJU products, which provide both tabular data and gridded
data. Emission intensity was calculated as CO2 emissions divided by
the gross domestic product (GDP) (billion USD), which was derived
from the National Bureau of Statistics of the People’s Republic of
China (NBS). The GDP data were adjusted by a purchasing power
parity (PPP) conversion factor, defined as the number of local cur-
rency units required to buy the same amounts of goods and services
in the local market that a US dollar would buy in the United States
in the reference year 2010 (Wang et al., 2019). Correlation
relationships (R) were conducted using the Python Scipy package
(Virtanen, 2020) between inventories, and figures were plotted
using the matplotlib package (Hunter, 2007) and ArcGIS.

3. Results

3.1. Provincial CO2 emissions derived from national and provincial
energy statistics

The CO2 emissions of the 31 provinces in 2012 varied greatly,
ranging from dozens of Mt to approximately 900Mt (Fig.1). The top
5 emitting provinces were Shandong (876 ± 56 Mt CO2), Hebei
(729 ± 50 Mt CO2), Inner Mongolia (677 ± 36 Mt CO2), Jiangsu
(671 ± 33 Mt CO2), and Henan (586 ± 51 Mt CO2) based on pro-
vincial energy statistics. Lower levels of emissions were observed in
Qinghai, Hainan and Tibet provinces (<100 Mt CO2) (Fig. 1). The
estimates for each province’s CO2 emissions in 2012 varied greatly,
with differences ranging from 23% (Yunnan) to 232% (Ningxia).
Moreover, the estimates for the top emitting provinces showed
large uncertainties (Fig. 1). Specifically, the CO2 emissions in the top
7 provinces (Shandong, Jiangsu, Hebei, InnerMongolia, Guangdong,
Liaoning, and Shanxi) account for nearly 50% of total emissions,
with absolute differences ranging from 158 to 435 Mt CO2 in 2012.
However, western provinces with low emissions, e.g., Gansu,
Qinghai, Guizhou, and Hainan, had smaller discrepancies. The SDs
of the inventories based on provincial statistics were generally less
(26 Mt CO2) than those based on national statistics (65 Mt CO2) in
2012. For example, the emission estimates in Jiangsu and Shanghai
based on national statistics showed obvious differences, with SDs
exceeding 150 Mt CO2, whereas those based on provincial in-
ventories exhibited SDs of 33 and 10 Mt CO2, respectively.

3.2. The temporal evolution of provincial-level CO2 emissions and
emissions per GDP derived from national and provincial energy
statistics

The temporal changes in the CO2 emissions of the top 5 emitting
provinces are shown in Fig. 2. Despite differences in magnitude, all
the estimates agreed that the emissions of the top 5 emitting
provinces increased from 2000 to approximately 2012 and leveled
off afterwards. The interannual variation in existing emissions
derived from provincial and national statistics is notably different,
and these discrepancies increased over time. For the average of all
the provinces during the period of 2000e2016, the CO2 emissions
derived from provincial statistics increased by 217%, and those
derived from national statistics increased by 197% (Fig. S2). The
total difference in the top 5 emissions from national and provincial
statistics was 39 Mt CO2 in 2000. However, it increased to 447 Mt
CO2 in 2016, with a peak difference of 636 Mt CO2 in 2012. This
trend was consistent with the findings of Guan et al. (2012). The
emissions estimated from provincial statistics showed relatively
consistent variations, which were able to detect apparent peak
emissions in 2011 or 2012 and then leveled off or went down.
Compared to emissions derived from provincial statistics, the var-
iabilities of ODIAC, EDGAR, and PKU were relatively smooth and
were unable to capture the interannual variation in CO2 emissions.
Moreover, PKU tended to underestimate emissions among existing
estimates, except for Henan. ODIAC showed a unique trend with
emissions accelerating before 2010 and subsequently leveling off in
Jiangsu and Henan.

The local governments of Beijing and Shanghai have proposed
clear timing targets for peaks in total and per capita CO2 emissions
in 2020 and 2025, respectively (Shanghai Municipal People’s
Government, 2018; The People’s Government of Beijing
Municipality, 2016). The CO2 emissions per GDP decreased



Fig. 1. Provincial CO2 emissions in 2012 for 7 inventories and standard deviations (SDs) based on national- and provincial-data-based inventories.

Fig. 2. CO2 emissions of the top 5 provinces from 2000 to 2018.
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dramatically (from 1 to 3 to 0.3e1 Mt CO2 per PPP billion USD)
during the study period (Fig. 2 and Fig. S2). Specifically, the emis-
sions per GDP decreased to 0.3e0.6 Mt CO2 per PPP billion USD for
Shandong, Hebei, Jiangsu and Henan provinces. However, they
decreased from approximately 3 to 1Mt CO2 per PPP billion USD for
Inner Mongolia. The spread of CO2 emissions per GDP among these
datasets also decreased, mainly due to the decoupling of CO2
emissions and GDP increase, i.e., the leveling off of CO2 emissions
and the increase of GDP.
3.3. The fractions of provincial-level CO2 emissions derived from
national and provincial energy statistics

The total fractions of the top 10 emitting provinces derived from
national-data-based inventories (~56%) are rather close to those
derived from provincial-data-based inventories (~58%) (Fig. 3); the
remaining provinces contributed the other ~40%. However, the
sequences of the top 10 provinces estimated fromnational statistics
are quite different from those datasets calculated from provincial
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statistics. Shandong is the highest emission province, with mean
values of up to 758 and 876 Mt CO2 based on national- and
provincial-data-based inventories, representing 8.1%e8.7% of the
total emissions. Moreover, there are substantial differences in other
top emitting provinces. The estimated emissions in Hebei, Shanxi,
and Inner Mongolia derived from provincial-data-based in-
ventories were approximately 34%, 36%, and 64% higher than those
from national-data-based inventories, respectively. Since national-
data-based inventories do not include detailed provincial energy
information and thus had larger SDs, we recommend that policy-
makers use provincial mean results to allocate responsibilities and
to develop reduction policies according to local realities.

3.4. The relationships of provincial-level CO2 emissions derived
from national and provincial energy statistics

To interpret the commonalities and differences in provincial
emissions between national- and provincial-data-based in-
ventories, the paired correlation relationship is shown in Fig. 4. The
provincial-level CO2 emissions developed from provincial statistics
have a good correlation relationship, with correlation coefficients
(R) greater than 0.9. Emissions from MEIC, NJU, and CEADs are
highly correlated, with a mean difference of less than 40 Mt CO2 in
2012. This implies that the energy statistics played the main role in
estimating emissions, albeit with differences in methodology.
However, the emissions derived from national statistics showed a
relatively weaker correlation (R < 0.85). The correlation between
ODIAC and PKU was weakest among all the estimates. This was
probably due to the different energy statistic input data (CDIAC for
ODIAC and IEA for PKU) and spatial disaggregation proxies
(nighttime light for ODIAC and population and vegetation for PKU),
producing the striking contrast in provincial-level emissions be-
tween ODIAC and PKU, with differences ranging from �225 to
403 Mt CO2 in 2012 (Fig. 1). Although the emissions of EDGAR and
PKU were both mainly used in the IEA statistics, their correlation
was not strong. First, PKU used the IEA national total and provincial
fractions to distribute the emissions. Second, differences in spatial
disaggregation proxies (nighttime light, population density for
EDGAR and population and vegetation for PKU) to reallocate na-
tional total to provincial scale and sectoral differences could
enhance uncertainties in the final provincial-level emissions. Third,
differences in the version used by each dataset also produced some
differences. PKU used version 2014, while EDGAR used version 2017
Fig. 3. The CO2 emissions fractions of the top 10 provinces in 2012. Subplots (a) and
(Table S2); these versions estimated coal production as 3637 and
3650 Mt, respectively, for the same year 2014. Moreover, EDGAR
also used other activity data, and for industrial processes, it
included more sectors, such as the production of lime, soda ash,
ammonia, ferroalloys and nonferrous metals.

3.5. Spatial differences of provincial-level CO2 emissions to CHRED
and CEADs

As CHRED used over 1.5 million enterprise-level point sources
and CEADs adopted measured emission factors that are closer to
China’s fossil fuel quality, they were used as references to evaluate
other datasets in 31 provinces. Compared to CHRED and CEADs, the
national-data-based inventories produced discrepancies in pro-
vincial estimates of �57%e162%, whereas provincial-data-based
inventories produced discrepancies of less than 45%. In general,
the provincial carbon emissions of ODIAC and NJUwere both higher
than the references, while those of PKU were lower than the ref-
erences (Fig. 5). EDGAR and MEIC were comparable to CHRED and
CEADs, with mean differences of 3% and 8%, respectively. With
respect to mean provincial CO2 emissions, the estimates of PKU
were 14% and 11% lower than those of CHRED and CEADs, respec-
tively. Specifically, for Inner Mongolia, Tianjin, and Ningxia, the
emissions by PKUwere 50% ormore lower than those of CHRED and
CEADs. However, the emissions of ODIAC and NJU were 3% and 8%
higher than those of CHRED and 10% and 13% higher than those of
CEADs, respectively. ODIAC probably allocated more emissions to
Beijing, resulting in 115% and 162% higher emissions than CHRED
and CEADs, respectively. Higher estimates by ODIAC were also
obvious in Heilongjiang, Tianjin, and Guangdong provinces, with
differences of 35%e85%. These differences can be attributed to the
spatial mismatch between the location of emissions and spatial
proxies (Gurney et al., 2009; Zheng et al., 2017). Moreover, the
spatial biases tended to increase with spatial resolution (Zheng
et al., 2017). The high spatial resolution of ODIAC (1 km) was
found to underestimate the emissions of areas that do not have
strong nighttime light (e.g., rural areas and power plants based on
fossil fuels) (Wang et al., 2013). However, the saturated estimates
caused by nightlight data may result in overestimated emissions in
urban areas (Wang and Cai, 2017). In addition, the carbon emissions
of MEIC are comparable to those of CHRED and CEADs, with mean
differences of 2%e4%. However, EDGAR tends to largely over-
estimate the emissions in Shanghai and Hubei, with differences of
(b) are the mean fractions of national- and provincial-data-based inventories.



Fig. 4. Correlations of multiple CO2 emission datasets at the provincial level in 2012.
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up to 123% and 105% compared to CHRED and 153% and 62%
compared to CEADs, respectively.

4. Discussions

4.1. Reasons why the sum of the provincial data is greater than the
national statistics

Since the national and provincial energy statistics were sur-
veyed by two different teams, namely, the National Bureau of Sta-
tistics and the provincial bureaus of statistics, it is not surprising
that the sum of the provincial energy statistics is not identical to the
national total (NBS, 2013). The sum of the provincial data is sys-
tematically greater than the national statistics due to the differ-
ences in national and provincial statistical systems and artificial
factors (Hong et al., 2017). To ensure the consistency between na-
tional emissions and the sum of province-level data, one possible
practical way might use the national total fossil fuel consumption
and provincial fractions to scale when distributing emissions to the
grid and further use field measurements and remote sensing data
to validate inventories.

National statistical data are usually collected by the national
survey team and reported from the local level and key energy-
consuming enterprises (�10,000 standard coal consumption), and
it is difficult to validate the locally reported data (NBS, 2013).
Furthermore, data inconsistency and double counting exist in the
provincial data (Hong et al., 2017; Zhang et al., 2007). Using coal
data as an example, the sum of interprovincial imports was 17.6%
(or 339.2 Mt) higher than that of exports in 2015, which is 27.2%
that of the total coal final consumption amount (data from the
energy balance sheet of provincial-level statistics). The same phe-
nomenon is observed in the oil and natural gas data, which were
17.3% (or 81.4 Mt) and 3.3% (or 3.6*109 m3), or 15.6% and 2.3%, that
of the total petroleum products and natural gas final consumption
amount, respectively. Additionally, double counting is common in
provincial statistics because some activities are counted by all
provinces involved.

For small enterprises, the quality of the energy statistics re-
ported to NBS is not as well validated and monitored as those of
large enterprises (Hong et al., 2017; NBS, 2013). Moreover, energy
data may be modified for artificial purposes because it correlates to
GDP and thus the evaluation of the local governors (Guan et al.,
2012; Hong et al., 2017). Moreover, some of the provinces pro-
vided equal supply and consumption data, which implies that some
local data were modified to achieve an exact balance. Overall, the
provincial estimates are 8e18% higher than the CEADs-based na-
tional estimate after 2008. Province-based estimates (e.g., NJU and
MEIC) are also higher than the CEADs (national) estimate. Hong
et al. (2017) found that the ratio of the maximum discrepancy to
the mean value was 16% due to different versions of national and
provincial data in CESY.

4.2. Contributions of three emission types

The spatial allocation of national or sectoral emissions is
generally performed on the basis of three groups of data sources,
i.e., point sources downscaled with geocoding locations, line
sources downscaled with traffic networks, and area sources relying
on spatial proxies. Characterizing the discrepancy in these three
categories can help us understand the bias better. Comparison of



Fig. 5. Spatial differences in provincial-level CO2 emissions from CHRED (a) and CEADs (b) in 2012.

P. Han et al. / Journal of Cleaner Production 277 (2020) 123377 7



P. Han et al. / Journal of Cleaner Production 277 (2020) 1233778
these three emission types was conducted with respect to EDGAR
and CEADs, both of which include detailed sectoral emissions data.
According to the characteristics of sectoral emissions and insights
from the data developers, the 20 sectors in EDGAR and 47 sectors in
CEADs are classified into the three groups above (Table S4). Addi-
tionally, there is an additional group of mixed sources in EDGAR.
For several sectors in EDGAR, the inventory information includes
multiple emission sources. CEADs presented a much larger share of
point source emissions than EDGAR (Fig. 6). EDGAR estimated that
approximately 46% of emissions were contributed by point sources,
followed by mixed sources (41%), and the remaining emissions
were line and area sources (both contributing ~7%). By contrast,
CEADs assumed that point sources are the primary sources
(contributing 85%), followed by area sources (9%) and line sources
(7%). Both EDGAR and CEADs estimated the emissions of the sectors
under the guidelines of the IPCC (Janssens-Maenhout et al., 2019;
Shan et al., 2017). However, there exists a substantial difference in
the point source emissions. The lower proportion of point source
emissions in EDGAR is partly due to the point sources it uses
(CARMA) (Janssens-Maenhout et al., 2019), which neglected small
point sources. Moreover, EDGAR uses population-based proxies
when no point source information is available. Another reason is
that some point sources cannot be separated individually from the
mixed sources.

Possible reasons for the differences between EDGAR and CEADs
include activity data from national and provincial energy statistics,
spatially disaggregated approaches, and point source emissions.
The CEADs are based on sectoral fossil fuel consumption from the
corresponding provincial statistical yearbook, while EDGAR is pri-
marily based on IEA and other international statistics at the na-
tional scale. Guan et al. (2012) and Hong et al. (2017) pointed out
that the inconsistency of energy statistics, especially coal con-
sumption data, largely contributed to the emission discrepancy in
China. The emissions based on provincial energy statistics were
higher than those from national statistics, with a peak difference of
18% in 2014 (Shan et al., 2017). This can be attributed to over-
reporting or double counting in energy statistics at the provincial
level by artificial factors (Guan et al., 2012; Hong et al., 2017).
Meanwhile, the absence of emissions from small enterprises at the
national scale and the lack of sectoral energy statistics in certain
Fig. 6. Compositions for point, line and area
provinces both contributed to uncertainties in the provincial
emission estimates (Guan et al., 2012; Hong et al., 2017; Shan et al.,
2017).

4.3. Impacts of emission factors

Since carbon dioxide emissions are calculated from activity data
and emission factors (EFs), differences in the EFs used by these
datasets also produce large differences in emission estimates
(Table S2). Coal is the major energy type and represents ~80% of the
total energy consumption (Liu, Z. et al., 2015). The EF used for raw
coal ranges from 0.491 to 0.746 in this study. For example, the
CEADs used 0.499 tC per ton of coal based on a large number of
measurements, and this coal EF is considered to be representative
of Chinese coal quality, while EDGAR used 0.713 (42.9% higher than
that of CEADs) based on the default value recommended by the
IPCC (Janssens-Maenhout et al., 2019; Liu, Z. et al., 2015; Shan et al.,
2018b). Hence, differences arise due largely to the low quality and
high ash content of Chinese coal (Janssens-Maenhout et al., 2019;
Liu, Z. et al., 2015). Furthermore, using the Monte Carlo method,
Shan et al. (2018b) showed that EFs contributed greater uncertainty
(-16 e 24%) than did activity data (-1 e9%). We thus recommended
substituting the IPCC default coal EF with the CEADsmeasurement-
based EF. Regarding emissions from coal consumption at the plant
level, the collection of their EFs measured in situ is valuable for
calibrating large point source emissions, and we call for such
physical measurements for the calibration and validation of exist-
ing datasets (Dai et al., 2012; Kittner et al., 2018).

4.4. Implications for inventory use and improvement

The bottom-up inventories are used as prior emissions in at-
mospheric inversion models to quantify CO2 fluxes between land/
oceans and the atmosphere. The errors in either the location or
timing of fossil fuel carbon fluxes are directly aliased into inverse
modeling (Asefi-Najafabady et al., 2014; Gurney et al., 2009). An
accurate fossil fuel CO2 emission inventory provides invaluable and
independent information for inverse modeling and helps to reduce
the uncertainty in land biosphere to atmosphere fluxes (Oda et al.,
2018; Thompson et al., 2016).
sources for EDGAR and CEADs in 2012
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Uncertainty in CO2 emission estimates can have a large impact
on the carbon budget simulation since atmospheric inverse models
use the bottom-up emission inventory as a priori emissions. Given
the targets of emissions reduction in China, it is crucial to develop
specific carbon emissions mitigation policies for different provinces
(Shan et al., 2019). The large discrepancy in provincial-level CO2
emissions among datasets produces great challenges in the allo-
cation of emission reduction responsibilities. Strategies for
reducing emissions could be based on composited trends, and
making reduction policies for provinces needs the support of
provincial-energy-based datasets instead of national-energy-based
ones. To reduce uncertainties in emission estimates, verification of
the energy statistics by ground-based measurements and remote
sensing data is urgently needed (Berezin, 2013; Yao et al., 2019).

5. Conclusions

We estimated China’s provincial fossil fuel CO2 emissions using
seven of the most up-to-date inventories. We found that: 1) the
provincial emissions ranged from 20 to 649 Mt CO2, with SDs
ranging from 8 to 159 Mt; 2) temporally, the emissions in most
provinces increased from 2000 to approximately 2012 and leveled
off afterwards; 3) the top 10 emitting provinces derived from
national-data-based inventories contributed ~60% of the national
total emissions; and 4) the provincial-level CO2 emissions esti-
mated from provincial statistics have a better correlation than the
national-data-based inventories. The root causes of the differences
were differences in activity data at the provincial and national
levels within the statistical systems and the low locally optimized
versus higher default coal EFs used. Thus, for future improvements,
provincial activity data from national and global inventories should
be made publicly available. Locally optimized coal EFs are better
than default ones in inventories. Local governments need multiple
highly detailed inventories when making policies designed to
reduce emissions. Moreover, policymakers should focus on the top
emitting provinces as high priorities when designing policies. In
terms of emissions intensity (emissions per GDP), provinces that
are higher than 0.5 still have room for improvement in industrial
structure adjustment. To reduce uncertainties in emissions esti-
mates, verification of the energy statistics by ground-based mea-
surements and remote sensing data is urgently needed.

Data availability

Thedata sets ofODIAC, EDGAR, PKUandCEADs are freelyavailable
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the data developers upon request.
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