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Abstract 

Background: Quantifying  CO2 emissions from cities is of great importance because cities contribute more than 70% 
of the global total  CO2 emissions. As the largest urbanized megalopolis region in northern China, the Beijing-Tianjin-
Hebei (Jing-Jin-Ji, JJJ) region (population: 112.7 million) is under considerable pressure to reduce carbon emissions. 
Despite the several emission inventories covering the JJJ region, a comprehensive evaluation of the  CO2 emissions at 
the prefectural city scale in JJJ is still limited, and this information is crucial to implementing mitigation strategies.

Results: Here, we collected and analyzed 8 published emission inventories to assess the emissions and uncertainty at 
the JJJ city level. The results showed that a large discrepancy existed in the JJJ emissions among downscaled country-
level emission inventories, with total emissions ranging from 657 to 1132 Mt  CO2 (or 849 ± 214 for mean ± standard 
deviation (SD)) in 2012, while emission estimates based on provincial-level data estimated emissions to be 1038 and 
1056 Mt. Compared to the mean emissions of city-data-based inventories (989 Mt), provincial-data-based inventories 
were 6% higher, and national-data-based inventories were 14% lower. Emissions from national-data-based inven-
tories were 53–75% lower in the high-emitting industrial cities of Tangshan and Handan, while they were 47–160% 
higher in Beijing and Tianjin than those from city-data-based inventories. Spatially, the emissions pattern was consist-
ent with the distribution of urban areas, and urban emissions in Beijing contributed 50–70% of the total emissions. 
Higher emissions from Beijing and Tianjin resulted in lower estimates of prefectural cities in Hebei for some national 
inventories.

Conclusions: National-level data-based emission inventories produce large differences in JJJ prefectural city-level 
emission estimates. The city-level statistics data-based inventories produced more consistent estimates. The consist-
ent spatial distribution patterns recognized by these inventories (such as high emissions in southern Beijing, central 
Tianjin and Tangshan) potentially indicate areas with robust emission estimates. This result could be useful in the 
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Background
Cities play a significant role in global greenhouse gas 
emissions, especially in urban areas, which are responsi-
ble for 67–76% of the global  CO2 emissions and energy 
consumption [1]. Cities have become the critical and 
basic units for implementing emissions mitigation poli-
cies [2–5]. However, city-level mitigation actions remain 
daunting challenges [1, 6, 7]. City carbon emissions 
are influenced by the physical environment, economic 
development, urbanized density, industry structure, and 
energy use patterns specific to each city [1, 8]. Cities 
with a heavy industry, high traffic load, and high popu-
lation density more easily have high emissions [3]. Dis-
crepancies in the emissions and emission-socioeconomic 
characteristics among different cities require the devel-
opment of corresponding policies [4]. Moreover, how 
to deploy observational instruments to form an efficient 
network is rather challenging [9–11], especially when 
there is no robust understanding of emissions. With 
emissions patterns identified by multiple inventories, 
such deployments would have more scientific guidelines. 
Furthermore, city strategies that reduce carbon emis-
sions are expected to achieve emissions mitigation and 
meet a city’s economic growth goals [12]. Therefore, an 
accurate understanding of city-level  CO2 emissions is of 
great importance in developing and implementing miti-
gation strategies.

With rapid economic development and urbaniza-
tion in China, cities account for 85% of China’s  CO2 
emissions [13]. Emission error could be much larger 
at subnational levels [14]. However, most of the exist-
ing studies focus on national [15–19], provincial [4, 16, 
20, 21], or sectoral  CO2 emissions inventories in China 
[22–25]. For example, using nine inventories, Han et al. 
[19] estimated that the national total fossil fuel and 
industrial process-related  CO2 emissions were 9.8 (9.2–
10.4) Gt  CO2 in 2016, and the emissions estimated from 
provincial-data-based inventories were more consist-
ent than those from spatial disaggregation of national 
energy statistics. A few efforts have been made to esti-
mate city-level emissions, but these efforts have mainly 
focused on megacities or provincial capital cities due 
to the limited energy data [26–29]. To date, the stud-
ies by Shan et  al. [12] and Cai et  al. [30] included 182 
and 305 Chinese cities, respectively, and still had gaps 
in city coverage. Zheng et al. [31] estimated all the cit-
ies’  CO2 emissions intensities in mainland China, yet 

the latest year included in the study was 2013, and the 
study lacked temporal dynamics. Thus, a more com-
prehensive assessment of city-level  CO2 emissions in 
China is critical for understanding the role of cities in 
carbon emissions.

The Beijing-Tianjin-Hebei (Jing-Jin-Ji, JJJ) region is 
the largest urbanized megalopolis region in northern 
China, covering an area of 218,000  km2 and home to 
112.70 million people [32–34]. Cities in the JJJ region 
include the municipalities Beijing and Tianjin and 
eleven prefecture cities in Hebei Province. In 2018, the 
total energy consumption in the JJJ region accounted 
for more than 10% of China’s total energy consump-
tion [34]. Moreover, coal is the primary energy source 
in this region [33, 34]. The JJJ region is under consid-
erable pressure to reduce  CO2 as well as air pollutant 
emissions [31, 35]. Beijing and Tianjin have commit-
ted to peak their  CO2 emissions by 2020 and approxi-
mately 2025, respectively, in the 13th Five-Year Plan 
[36]. Hebei Province is experiencing rapid industrial 
and urban development [37], contributing greatly to 
the national  CO2 emissions [4]. However, there is a 
wide range of  CO2 emission estimates in the JJJ region, 
especially in the areas with high emissions. The emis-
sions from Beijing and Tianjin estimated by Cai et  al. 
[30] and Wang [38] were 41–57% higher than those 
estimated by Shan et al. [16]. In addition, based on the 
results of Mi et  al. [39] and Cai et  al. [30], Tangshan’s 
carbon emissions differed by 50%. To our knowledge, 
there is not a comprehensive assessment on prefectural 
city level  CO2 emissions in the JJJ region. Cai et al. [33] 
reported the provincial emissions, but not covered the 
prefectural cities in JJJ. Therefore, an accurate estima-
tion of the  CO2 emissions in the JJJ region is of great 
significance in terms of providing accurate information 
for developing mitigation policies.

The assessment of existing  CO2 emissions inventories 
is urgently needed, yet direct observations of  CO2 emis-
sions at the city scale is limited, especially in developing 
countries [10, 11]. Here, we conducted a comprehensive 
analysis of 8 state-of-the-art inventories and presented 
the temporal dynamics, spatial distributions, and urban 
and non-urban fractions of 13 cities. We recognized 
the similarities and differences in emissions and thus 
improved the understanding of current inventories; this 
research provides useful information for policy making 
related to reducing city emissions and monitoring  CO2.

efficient deployment of monitoring instruments, and if proven by such measurements, it will increase our confidence 
in inventories and provide support for policy makers trying to reduce emissions in key regions.

Keywords: City-level fossil fuel  CO2, Industry processes, Multiple inventories, Policy making, CO2 monitoring
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Data and methods
Data
We used annual  CO2 emissions data from eight emission 
inventories, including the China High Resolution Emis-
sion Database (CHRED); China Emission Accounts and 
Datasets (CEADs); Multi-resolution Emission Inventory 
for China (MEIC), version 1.3; the Nanjing University 
 CO2 emission inventory (NJU); the Peking University 
 CO2 emission inventory (PKU), version 2 (PKU-CO2-V2); 
the Open-source Data Inventory for Anthropogenic  CO2, 
version 2018 (ODIAC2018); the Emissions Database for 
Global Atmospheric Research, version 5.0 (EDGARv5.0); 
and the Fossil Fuel Data Assimilation System, version 2.2 

(FFDAS v2.2). Below, the eight inventories were catego-
rized into two based on the emission calculation method-
ologies (Table 1).

Emission inventories based on city‑level data
We used two inventories that are based on city-level 
data. CHRED was constructed by enterprise-level point-
source data and China’s city and provincial statistics, and 
then carbon emissions were allocated to 10 km resolution 
using proxy data in 2007 and 2012 [15, 30]. The CEADs 
inventory provides total  CO2 emission estimates at the 
provincial and city levels from 2000 to 2016 based on 

Table 1 Summary of the emission inventories ( modified from Han et al. [19])

Data ODIAC EDGAR PKU‑CO2 FFDAS CHRED MEIC NJU CEADs

Domain Global Global Global Global China China China China

Temporal 
coverage

2000–2016 1970–2012 1960–2014 1997–2015 2007, 2012 2000–2016 2000–2015 1997–2015

Temporal 
resolution

Monthly Annual Monthly Hourly/Annual Biennially or 
triennially

Monthly Annual Annual

Spatial resolu-
tion

1 km 0.1 degree 0.1 degree 0.1 degree/ 
1 km

10 km 0.25 degree 0.25 degree N/A

Emission 
estimates

Global/
National

Global/ 
National

Global/
National

Global/
National

National/Pro-
vincial

National/Pro-
vincial

National/Pro-
vincial

Prefectural/
National/ 
Provincial

Emission fac-
tor for raw 
coal (tC per t 
of coal)

0.746 0.713 0.518 – 0.518 0.491 0.518 0.499

National 
uncertainty

17.5% (95% CI)  ± 15%  ± 19% (95% 
CI)

5- 15%  ± 8%  ± 15% 7–10% (90% CI) −15%–25% 
(95% CI)

Point source CARMA2.0 CARMA3.0 CARMA2.0 CARMA2.0 FCPSC CPED CEC;ACC;CCTEN N/A

Line source N/A The Open-
StreetMap 
and Open-
RailwayMap, 
Int. aviation 
and bunker

N/A Transport 
networks

The national 
road, railway, 
navigation 
network, 
and traffic 
flows

Transport 
networks

N/A N/A

Area source Nighttime 
light

Population 
density, 
nighttime 
light

Vegetation 
and popula-
tion density, 
nighttime 
light

Nighttime 
light

Population 
density, land 
use, human 
activity

Population 
density, land 
use

Population 
density, GDP

N/A

Version name ODIAC2018 EDGARv50_ PKU-CO2-v2 FFDAS v2.2 CHRED MEIC v.1.3 NJU-CO2v2017 CEADs

Year pub-
lished/
updated

2018 2019 2016 2014 2017 2018 2017 2017

Data sources http://db.cger.
nies.go.jp/
datas et/
ODIAC /

https ://edgar 
.jrc.ec.europ 
a.eu/
overv iew.
php?v=50_
GHG

http://inven 
tory.pku.edu.
cn/downl 
oad/downl 
oad.html

http://ffdas 
.rc.nau.edu/
Data.html

Data devel-
oper

Data devel-
oper

Data developer http://www.
ceads .net/

References Oda [40] Janssens-Mae-
nhout [41]

Wang et al. 
[51]

Asefi‐
Najafabady 
et al. [42]

Cai et al. [43]; 
Wang et al. 
[44]

Zheng [45]; 
Liu et al. 
[46]

Liu [47] Shan et al. [48]; 
Guan et al. 
[17]

http://db.cger.nies.go.jp/dataset/ODIAC/
http://db.cger.nies.go.jp/dataset/ODIAC/
http://db.cger.nies.go.jp/dataset/ODIAC/
http://db.cger.nies.go.jp/dataset/ODIAC/
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
http://inventory.pku.edu.cn/download/download.html
http://inventory.pku.edu.cn/download/download.html
http://inventory.pku.edu.cn/download/download.html
http://inventory.pku.edu.cn/download/download.html
http://inventory.pku.edu.cn/download/download.html
http://ffdas.rc.nau.edu/Data.html
http://ffdas.rc.nau.edu/Data.html
http://ffdas.rc.nau.edu/Data.html
http://www.ceads.net/
http://www.ceads.net/
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apparent energy consumption data and local optimized 
emission factors [4, 17, 49].

Emission inventories based on provincial or national level 
data
We used two inventories that are based on province-level 
data. China’s carbon emissions from MEIC are developed 
by a technology-based methodology based on provin-
cial energy consumption, combustion/industrial/control 
technologies and emission factor databases covering 
2000 to 2016 at 0.25, 0.5, and 1 degree spatial resolutions 
by Tsinghua University [18, 31, 50]. NJU calculated Chi-
na’s  CO2 emissions using provincial energy statistics and 
spatially distributed emissions based on the location of 
large point sources (power plants and cement plants) and 
various proxy data, i.e., using GDP for industry-related 
emissions and population for transportation and other 
emissions, at 0.25 degree resolution from 2000 to 2016 [5, 
18].

We used 4 inventories that are based on national-level 
emission estimates. These subnational emission distribu-
tions are largely achieved by emission downscaling. PKU 
distributes national or subnational fuel data with various 
proxies (e.g., power plants as point sources, night-time 
light to distribute national gas flaring and population for 
others) based on the subnational disaggregation method 
at 0.1 degree resolution from 1960 to 2014 [51]. The 
year 2018 version of the ODIAC emissions data product 
(ODIAC2018) distributes national emissions into 1  km 
and 1 degree grids from 2000 to 2017 based on spatial 
proxies, such as geographical locations of power plant 
emissions, satellite observations of nightlights to dis-
tribute nonpoint emissions, and aircraft and ship fleet 
tracks [52, 53]. EDGAR provides carbon emissions on 
the 0.1 degree grid from 1970 to 2018 based on national 
emissions by a variety of spatial proxy data, including 
power plants from CARMA3.0 for point sources, road 
network and different weighting factors for line sources 
and population for residential and commercial emissions 
[54, 55]. FFDAS quantifies carbon emissions using a data 
assimilation technique incorporating remote-sensing and 
national fuel accounts and power plants at a 0.1 degree 
resolution from 1997 to 2015 [42, 56]. All data sets used 
here have yearly data. For more details, please refer to 
Han et al. [19].

Methods
These inventories were first extracted by a JJJ mask (in 
shapefile format) from the National Geomatics Center 
of China using ArcGIS 10.02 software (ESRI, 2012). The 
emissions from urban and non-urban areas were sepa-
rated by using an urban mask from the European Space 
Agency (ESA) Climate Change Initiative (CCI) land cover 

maps with a 300  m resolution (https ://www.esa-landc 
over-cci.org), and the urban area here mainly refers to 
impermeable surfaces, with high coherence (stability) 
and bright reflections, maintained in time and under 
varying angles detected by satellite. This means there is a 
density of human structures such as houses, commercial 
buildings, roads, bridges, and railways, while a city refers 
to prefectural level zones with a legal definition that 
defines a physical geographic boundary. ArcGIS was used 
to obtain prefectural cities’ total emissions in urban and 
non-urban areas using city mask data from the National 
Geomatics Center of China. The data pre-process proce-
dures are as follows: (1) Convert the grid data to polygon 
data, which will keep the original value of the grid; (2) 
Split the polygon data using the prefectural city bound-
aries, and this step produces the real areas of a polygon 
within the city boundary; (3) Calculate the actual areas 
of each polygon using “Calculate geometry” and multiply 
the areas with emissions intensity (e.g. kg  CO2/km2); (4) 
Finally, sum all the values within the boundary of a city. 
Emission intensity was calculated as the  CO2 emissions 
divided by the GDP, data which were derived from the 
National Bureau of Statistics of the People’s Republic of 
China (NBS) and websites of prefectural cities’ statistics 
bureaus in Hebei. Linear regressions were conducted 
using the Python scipy package between inventories with 
CEADs or CHRED.

Results
City‑level  CO2 emissions
In 2012, the emissions of 13 cities varied widely from 13 
to 282 Mt  CO2 (or 72 ± 45, mean ± SD) (Fig. 1). Tangshan, 
Tianjin, Handan and Beijing are high-emission areas. The 
total emissions estimated from provincial-data-based 
inventories (i.e., MEIC and NJU) were 6% higher than 
those from city-data-based inventories (i.e., CHRED and 
CEADs) but were 14% lower from downscaled national-
level emissions (i.e., PKU, ODIAC, EDGAR, and FFDAS) 
in 2012. There was a great discrepancy in national-
data-based inventories with a range from 657 to 1132 
Mt  CO2 (or 849 ± 214, mean ± SD). The  CO2 emissions 
from EDGAR and PKU were 28% and 34% lower than 
the average from city-data-based inventories. The 13 cit-
ies have substantial differences in natural resources and 
socioeconomic conditions. A city with high productivity, 
rapid economic growth, and a large population tends to 
have high carbon emissions. Emissions from metropo-
lises (e.g., Beijing and Tianjin) with advanced econom-
ics and high urbanization rates greatly contributed to the 
JJJ total emissions (23–43%, Fig.  1). In Hebei Province, 
high emissions were also located in the provincial capital 
and in industrial cities, such as Shijiazhuang, Tangshan, 
Handan, and Baoding, which accounted for 57%–68% 

https://www.esa-landcover-cci.org
https://www.esa-landcover-cci.org
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of the total emissions in Hebei. The 7 remaining cities 
accounted for 32–43% of the total emissions in Hebei.

Since CHRED and CEADs use city-level statistical data 
and these two datasets are more consistent with each 
other than with the other datasets, they are used as ref-
erences for national and provincial data-based invento-
ries. The emissions of Beijing from EDGAR, MEIC, and 
NJU are comparable to those from CHRED, with differ-
ences ranging from 1 to 8 (1–7%) Mt  CO2 in 2012. How-
ever, compared to the values estimated by CHRED, the 
emissions were 115% and 32% higher when estimated by 
ODIAC and FFDAS, respectively, and 31% lower when 
estimated by PKU. These trends were also found in Tian-
jin, and the emissions from ODIAC were equal to 227 Mt 
 CO2, a value that was 47% higher than that from CHRED 
but 53% lower than that from PKU. Emissions in prefec-
tural cities with coal mines and heavy-intensity indus-
tries also showed large differences, such as Tangshan 
and Handan. Tangshan’s emissions varied largely across 
these datasets. CHRED and CEADs both produced larger 
estimates (182 and 282 Mt), while estimates from PKU, 
EDGAR, and FFDAS were only 69–87 Mt, or 52–62% 
lower, than that by CHRED. Handan’s emissions were 
up to 121 and 130 Mt based on CHRED and CEADs, 
respectively, but ranged from 61 to 89 Mt (26–53% lower 

than CHRED and CEADs) for the other inventories. It 
should also be noted that CHRED and CEADs produced 
large differences in some cities, such as Tangshan, Shi-
jiazhuang, and Cangzhou, and these differences high-
lighted future directions for city-level inventories in JJJ. 
According to the plan of “Collaborative Development of 
Beijing, Tianjin and Hebei Province”, Zhangjiakou and 
Chengde belong to ecological conservation areas; thus, 
heavy industry is not recommended, and more efforts 
should be concentrated in high-emission cities such as 
Tangshan, Shijiazhuang and Handan.

Spatial pattern of  CO2 emissions
The uneven spatial distribution of  CO2 emissions reflects 
the highly diverse conditions in population, economic 
development, and natural environment in the JJJ region. 
The spatial distributions showed reasonably good agree-
ment in patterns such as the high emissions areas of 
Beijing-Tianjin-Tangshan, although they varied in detail 
(Fig.  2). Low emissions (e.g., < 100 ton  CO2  km−2) from 
different datasets were mainly located in the northwest-
ern part of the region. This result is because cities in the 
north, such as Zhangjiakou and Chengde, have a low 
population density and have lower economic develop-
ment [39]. High-emission areas (> 10,000 t  CO2  km−2) 

Fig. 1 City-level  CO2 emissions from CHRED, CEADs, MEIC, NJU, PKU, ODIAC, EDGAR, and FFDAS in the Beijing-Tianjin-Hebei (JJJ) region in 2012
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are clustered in urban centers in the south and east. Hot-
spots of  CO2 emissions (> 50,000 t  CO2  km−2) recognized 
by most inventories are located in the urban areas of Bei-
jing, Tianjin, and Tangshan.

Specifically, the spatial distributions of  CO2 emissions 
from EDGAR and FFDAS are consistent with the pat-
tern from CHRED. However, the total amount of emis-
sions in the region from EDGAR is 23% lower than that 
from CHRED. This difference is caused by the discrepan-
cies estimated in Handan, Tianjin, and Tangshan from 
EDGAR, which is altogether approximately 204 Mt  CO2 
lower than that from CHRED. Although the difference 
in total emissions between FFDAS and CHRED is less 
than 3%, the emissions in Tangshan and Beijing from 

FFDAS are 62% lower and 32% higher than those from 
CHRED. ODIAC distributes the non-power plant por-
tion of national emissions based on satellite nighttime 
light [52, 53]. The pattern of carbon emissions in ODIAC 
is highly consistent with the spatial distribution of urban 
areas. Low emissions ranging from 50 to 500 t  CO2  km−2 
are not found in ODIAC. This result is probably due to 
the low emissions mostly located in the non-urban areas, 
which are mainly covered by vegetation and do not emit 
strong night light (Fig. 2). ODIAC and FFDAS have simi-
lar patterns, shown in Fig. 2, which can be because they 
both used night-time light to distribute nonpoint emis-
sions. Compared with CHRED, the carbon emissions for 
the remaining inventories all showed higher emissions 

Fig. 2 Spatial distribution of  CO2 emissions (a) from CHRED, MEIC, NJU, PKU, ODIAC, EDGAR, and FFDAS in the JJJ region in 2012. Horizontal bars 
represent emissions fractions from each category of total emissions (b). Urban, cropland and tree and shrub cover from ESA_CCI_LC
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in the southeastern areas, which are mainly covered 
by croplands, with the results of MEIC, NJU, PKU and 
ODIAC being more notable and the results of EDGAR 
and FFDAS being relatively weaker. For the spatial allo-
cation of emissions, CHRED, EDGAR and FFDAS give 
more emissions to high emitting grids, with > 50,000 t 
 CO2/km2 grids contributing more than 50% of the total 
emissions (Fig.  2c), while for NJU and PKU, the same 
level of high emitting grids contributed less than 10%.

It should be noted that the urban area contributed 
largely to the total emissions because of its large energy 
consumption and population [57]. Here, according to the 
urban extent from the ESA CCI land cover maps with a 
300  m resolution (https ://www.esa-landc over-cci.org) 
(Fig.  2), we extracted urban emissions from the seven 
gridded inventories, namely, CHRED, NJU, MEIC, PKU, 
ODIAC, EDGAR and FFDAS. As illustrated in Fig.  3, 
the proportion of urban emissions shows obvious dif-
ferences among datasets, ranging from 17% (NJU) to 
50% (ODIAC). As the largest contributors, the propor-
tions of urban emissions in Beijing and Tianjin varied 
between 37% (NJU) –73% (ODIAC) and 23% (NJU) 
–63% (ODIAC), respectively. ODIAC tended to overesti-
mate emissions in urban areas, resulting in the strongest 

urban-non-urban emissions gradients, especially in Tian-
jin (63% from urban) and Hengshui (79% from urban). 
This result is due mainly to the use of the nightlight proxy 
[14, 58]. The urban emissions from FFDAS also show 
a similar pattern with those from ODIAC, except for 
Zhangjiakou and Hengshui. In addition, in high-emitting 
cities in Hebei, such as Tangshan, all inventories identi-
fied urban emissions accounting for a smaller fraction 
(20%–40%) than those in Beijing and Tianjin.

Temporal variation in city‑level  CO2 emissions 
and emissions intensity
The interannual variations in carbon emissions from 
existing inventories all showed an increasing trend dur-
ing 2000–2012, ranging from 355 ± 58 Mt to 915 ± 178 
Mt  CO2, and then tended to level off or showed a slight 
downward trend afterwards (Fig.  4). Total emissions 
of the JJJ region from ODIAC, CEADs and EDGAR 
increased faster than others, with average growth rates 
of 9.7%, 9.2% and 9.1%, respectively, during 2000–2012. 
However, the regional total emissions from FFDAS, PKU, 
MEIC, and NJU showed a relatively small trend, with an 
annual growth rate of 6.0–8.4%. PKU and EDGAR tended 
to underestimate emissions compared to CHRED and 

Fig. 3 Spatial distribution of urban and non-urban  CO2 emissions from CHRED, MEIC, NJU, PKU, ODIAC, EDGAR, and FFDAS in the JJJ region in 2012 
for subplot (a). The area of the pie chart represents the amount of  CO2 emissions per city. The number near each pie chart represents the urban 
emission fraction. And the urban extent from ESA_CCI_LC for subplot (b)

https://www.esa-landcover-cci.org
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Fig. 4 Temporal variation in the annual  CO2 emission amounts and emissions intensity from CHRED, CEADs, MEIC, NJU, PKU, ODIAC, EDGAR, and 
FFDAS in the JJJ region. Solid lines denote  CO2 emissions, and dashed lines denote emissions intensity. Note that the scales are different across 
cities to show their variations
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CEADs, especially in high-emitting cities. The interan-
nual variation at the city scale from MEIC was consistent 
with that from NJU, both of which were based on provin-
cial statistical data.

Specifically, for Beijing, the  CO2 emissions from MEIC, 
NJU, CEADs, PKU, and CHRED tended to be stable since 
2007, which was consistent with the studies by Li et  al. 
[59] and Shan et al. [60]. This result may be because Bei-
jing decreased coal use by 43% and increased natural gas 
consumption by 144% from 2007 to 2014 [4, 16]. How-
ever, the annual emissions in Beijing from ODIAC fluctu-
ated greatly, ranging from 73 Mt  CO2 in 2000 to 263 Mt 
 CO2 in 2017. PKU is a downscaled inventory; however, 
it uses provincial consumption fractions to rescale the 
IEA (International Energy Agency) total fossil fuel con-
sumption when distributing emissions to grids, and thus, 
it can capture the Beijing decreasing trend after 2007, 
while other national downscaled inventories cannot. The 
emissions in Tianjin and Tangshan experienced rapid 
growth and then outpaced the emissions of other cities in 
recent years. The time series of emissions in Tianjin from 
ODIAC, MEIC, NJU, CEADs, and CHRED all showed 
an apparent growing trend during 2009–2014, which 
mainly resulted from the increment of coal use (22%) 
and crude oil (90%) [61]. The decline between 2005 and 
2010 for CEADs was because of the change in statistical 
methods and dimensions, and blast furnace gas was lack-
ing from the energy balance sheet during this period. For 
other periods, high emissions and large fluctuations in 
Tangshan’s emissions from CEADs were partially caused 
by its heavy industrial system [12, 39], whose iron and 
steel production accounted for 60–70% of Hebei’s total 
production.

The emissions intensity  (CO2 emissions per unit of 
GDP) in the JJJ region showed a decreasing trend since 
2000 (Fig.  4). Interannual changes in emissions inten-
sity among datasets were consistent with the total emis-
sions. Moreover, the decoupled relationship between an 
increase in GDP and a decrease in emissions intensity 
indicated that a reduction in carbon emissions inten-
sity could be achieved while also maintaining economic 
growth. For example, the GDP in Beijing and Tianjin 
significantly increased by average annual rates of 14% 
and 16%, respectively, during 2000–2016, but emissions 
intensity declined by 8–11% annually from PKU, MEIC, 
NJU, and CEADs and by 5–7% from ODIAC, EDGAR, 
and FFDAS.

Comparison of city‑level  CO2 emissions from different 
inventories to CHRED and CEADs
CHRED and CEADs were used as references to evalu-
ate other datasets because they are both based on city-
level energy statistics and consistent with each other. 

Furthermore, CHRED included unique comprehensive 
point sources (over 1.5 million enterprises) [33], and 
CEADs used measured local emission factors from 602 
coal samples and 4243 coal mines [49]. As expected, the 
city-level  CO2 emissions showed the best correlation 
between CEADs and CHRED, with a correlation coeffi-
cient (R) as high as 0.9 (Figs. 5a and 6a) and with a slope 
close to 1 and a smaller intercept than the others. The 
emissions from MEIC and NJU were both highly corre-
lated with those from CEADs and CHRED, with R val-
ues ranging from 0.8 to 0.9 and slopes ranging from 0.5 
to 0.7. These results were probably due to MEIC and NJU 
using provincial energy statistics as input data. CHRED 
and CEADs also used provincial inventories to calculate 
some city-level  CO2 emissions because of the lack of con-
sistent and accurate energy statistics in certain cities [12, 
30].

PKU was strongly correlated with CEADs and CHRED, 
with R values both equal to 0.8. The slopes were only 
0.2 and 0.4 for the correlation relationships of PKU and 
CEADs and of PKU and CHRED, respectively (Figs.  5 
and 6). The lower emissions estimated from PKU were 
mainly due to the rescaled energy data for China’s total 
by IEA statistics. Emissions from EDGAR had a relatively 
weak relationship with those of CEADs and CHRED, 
with R values of 0.6 and 0.8, respectively. ODIAC and 
FFDAS showed the lowest relationships with CEADs 
and CHRED, with R values of 0.5 and 0.7, respectively. 
These results were probably due to ODIAC, EDGAR and 
FFDAS all disaggregating emissions based on national 
energy statistics.

Discussions
Differences in prefectural‑city‑, provincial‑ 
and national‑statistical data‑based inventories
The differences between provincial- and national-statis-
tical data-based emissions have been well discussed in 
previous studies [19, 62, 63]. However, the differences 
between provincial and prefectural city statistical data-
based emissions are poorly understood. Thus, it is dif-
ficult to conclude which is closer to the truth. Of these 
inventories, CEADs provided both prefectural-city- and 
provincial-statistical data-based estimates. We found 
that prefectural-city-statistical data-based estimates were 
60% higher than provincial-statistical data-based esti-
mates (Fig.  7) from 2000–2010 and gradually decreased 
to approximately zero after 2012, i.e., the sum of prefec-
tural-statistical data became more consistent with pro-
vincial data in recent years due to the wider coverage of 
large-volume industries in local statistical authorities, 
indicating the improvement of statistical data between 
these two levels.
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At the prefectural city level for JJJ and other cities, the 
estimated differences generally increased from less than 
10% to more than 300% when more inventories were 
included (Table 2) [5, 64–66]. Generally, the prefectural-
city-statistical data-based inventories of CHRED and 
CEADs were more consistent than the others. For Hebei 
prefectural cities (such as Tangshan and Handan), the 
spread was relatively large among the three methods (i.e., 
the national, provincial and prefectural statistics data-
based inventories), with differences ranging from 69 to 
282 Mt  CO2 for Tangshan and from 61 to 130 Mt  CO2 
for Handan in 2012 (Table 2). For Tangshan, the national 
inventories (ODIAC, EDGAR, PKU and FFDAS) were 
69–117 Mt  CO2, which were all smaller than the prefec-
tural-city level and the provincial estimates of 138–282 
Mt  CO2 (MEIC, CHRED, MEIC and NJU). CEADs esti-
mated Tangshan’s emissions to be much higher than the 
other inventories due to the large consumption of coke, 
e.g., the amount for 2015 was 31,986,000 tons, which 
was 41.4% that of Hebei Province [61]. The estimates for 

provincial-statistic data-based inventories were lower 
in Tangshan and Handan and thus tended to calculate 
higher emissions for other cities such as Baoding, Lang-
fang and Hengshui due to the constraint of provincial 
total emissions. Moreover, the estimates for Beijing and 
Tianjin were more consistent for provincial estimates 
than the national estimates.

Urban and non‑urban  CO2 emissions and implications 
for carbon monitoring instrument distribution
The urban extent of the ESACCI-LC product was 17%, 
14%, and 5% of the land area for Beijing, Tianjin and 
Hebei, respectively, and the corresponding direct  CO2 
emissions were 64%, 37%, and 20%, respectively, of the 
total emissions for Beijing, Tianjin and Hebei for the 
mean of all inventories, which indicates that high emis-
sions are spatially located more often in the urban areas 
of Beijing and Tianjin and are more diffusive in non-
urban areas in Hebei. Similarly, an urban  CO2 emissions 
study conducted by Cai et al. [33] showed that the urban 

Fig. 5 Correlation of city-level emissions from CEADs and from CHRED (a), MEIC (b), NJU (c), PKU (d), ODIAC (e), EDGAR (f), and FFDAS (g) in the JJJ 
region
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extents were 17%, 17%, and 4% of land area in Beijing, 
Tianjin, and Hebei, which contributed 84%, 60%, and 41% 
of direct  CO2 emissions, respectively. The differences 
between these two studies were mainly due to the inven-
tories and urban land masks used. The ESA 300 m data 
showed more urban details, while Cai et  al. [33] used a 
homemade dataset based mainly on the county/district 
and town/township GIS data, which are more continuous 
in space, to depict the urban areas. However, our study 
and Cai et  al. [33] are largely consistent in their urban 
extent estimates for Beijing, Tianjin and Hebei and were 
approximately 20% lower than the  CO2 emissions for 
urban areas calculated by Cai et  al. [33]. Specifically, at 
the prefectural city level, emissions from national-data-
based inventories were 53–75% lower in the industrial 
cities of Tangshan and Handan and 47–160% higher 
in Beijing and Tianjin than those from city-data-based 
inventories, and this difference was consistent with 
Gately and Hutyra [66]. The implication to the commu-
nity and society is that national-based inventories have 

more biases in prefectural city levels than in local data-
based inventories, and thus, we should be cautious when 
using national-based inventories for city-level use, such 
as in emissions evaluation, modeling research and policy 
making.

The high-emission areas recognized by most of the pre-
sent inventories have significant implications for moni-
toring instrument deployment [7, 10, 11, 67], although 
this type of comparison does not allow us to further dis-
cuss the accuracy of emission estimates. Thus, this infor-
mation needs to be supplemented by objective physical 
measurements to validate the accuracy (e.g., [14, 53]). 
The areas with good agreement among inventories can 
be key areas for observation deployment, and in return, 
we can use these measurements to validate the accuracy 
of inventories. For example, third-party monitoring of 
 CO2 emissions using high-density low-cost sensor net-
works is becoming possible due to the development of 
nondispersive infrared (NDIR) technology. Martin et  al. 
[68] investigated a low-cost NDIR sensor and compared 

Fig. 6 Correlation of city-level emissions from CHRED and from CEADs (a), MEIC (b), NJU (c), PKU (d), ODIAC (e), EDGAR (f), and FFDAS (g) in the JJJ 
region
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it with the standard instrument Los Gatos and found that 
the accuracy could reach 2–5  ppm after environmental 
factor corrections. More than 300 of such  CO2 sensors 
were deployed in a network in Switzerland, and they were 
able to resolve  CO2 changes and differences with mag-
nitudes larger than ~ 20 ppm [11]. Bao et al. [69] proved 
such sensors to be promising in high-emission areas near 
Shijiazhuang, Hebei Province. However, how to deploy 
such nodes to form an efficient network has been a chal-
lenge [9]. With emissions patterns identified by most 
inventories, such deployment would have more scientific 
references. For example, in Beijing and Tangshan, emis-
sions from urban areas consisted of 50–70% and 20–30%, 
respectively, which indicated that more sensors should be 
deployed in the urban areas of Beijing, while more nodes 
should be deployed in the non-urban areas of Tangshan. 
Moreover, atmospheric  CO2 measurements need to 
consider the combined effects of biospheric and anthro-
pogenic signals since the JJJ region is surrounded by veg-
etation, especially in the western and northern parts, and 
atmospheric transport also plays a significant role in the 
measurements.

The identified high-emission areas might also indicate 
potential target areas for emission reductions for policy-
makers if such high-emission areas are also confirmed by 

instruments. Beijing and Tianjin have committed to peak 
their CO2 emissions by 2020 and approximately 2025, 
respectively, in the 13th Five-Year Plan [36]. More specifi-
cally, local governments of Beijing have proposed a clear 
peak time of total and per capita  CO2 emissions in 2020 
in its "13th Five-Year Plan" for energy conservation and 
consumption reduction and climate change; thus, the 
city must promote the revolution in energy production 
and consumption, improve energy efficiency, and accel-
erate the construction of low-carbon cities [70]. High-
emission areas (e.g., > 50,000 ton emissions in Fig. 2) need 
to allocate high priority to emissions control. The joint 
emissions control of JJJ also needs to identify the high-
emission areas in Fig. 2.

Point source contributions
Point emissions consist of a large proportion of total 
emissions [15, 33]. For the JJJ regional total, CHRED esti-
mated the highest point emissions proportion of 78.1%, 
including 12,991 industrial key emission sources and 
187 industrial process sites [33]. Other inventories pro-
duced much smaller proportions ranging from 19% for 
NJU to 43% for EDGAR (Fig. 8), and MEIC and EDGAR 
both had more than 100 large emission grids associated 
with power plants. Point sources for CHRED consisted of 

Fig. 7 Percentage differences between prefectural-city-based and provincial-based estimates for CEADs. For the years without data, values were 
interpolated using data from nearby years
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power plants, industries and industrial processes, while 
other inventories (e.g., PKU, ODIAC) mostly used the 
CARMA dataset, which included only power plants. NJU 
included power plants ranking with the top 80% in elec-
tricity production and cement production that exceeded 
1 Mt  yr−1 [47], and there were only 42 power plants and 
23 cement plants and thus fewer high-emission grids 
(N = 37, Fig. 8), which may be the reason why NJU point 
emission fractions were much smaller than those of other 
inventories. Since the gridded maps are mostly pro-
duced based on point sources, line sources (transporta-
tion emissions) and finally area sources, and area sources 
are distributed using the total estimate minus the point 
and line sources and proxies (e.g., night light, population, 
GDP), point source numbers, geolocations and emission 
magnitudes determined a very large degree of the grid-
ded products (e.g., [53]). To improve the accuracy in 
mapping emissions and mitigate the errors in emission 
estimates, it is important to include reliable information, 

preferably reported information, on large point sources 
as much as possible. Thus, it is preferable for the com-
munity to share the point source information and for the 
information to be accurate to improve the understand-
ing of the point source emissions (e.g., [14]). This is also 
important for emission monitoring purposes.

Conclusions
Here, we conducted a comprehensive analysis of city-
level fossil fuel and industrial process-related  CO2 emis-
sions from cities in the Beijing-Tianjin-Hebei region. We 
showed their temporal dynamics, spatial distributions, 
and urban and non-urban emissions fractions. We rec-
ognized the similarities and differences in emissions and 
thus improved the understanding of current inventories 
and provided useful information for policy making in 
terms of reducing city emissions and monitoring  CO2. 
The results showed that compared to city-data-based 
inventories, provincial-data-based inventories were 6% 

Table 2 CO2 emissions estimates and differences at prefectural cities in JJJ and other cities

City Number 
of inventories

Year of emissions Estimates  (MtCO2) (Max–min)/min 
(%)

References

Beijing 2 2006 115.2–160.7 39.5 Chen et al. [64]

2 2012 112.8–113.5 0.6 Cai et al. [33]

3 2012 79.7–134.0 68.1 Wang et al. [67]

8 2012 82.0–254.9 210.8 This study

8 2015 80.9–260.7 222.4 This study

Tianjin 2 2012 167.4–180.0 7.1 Cai et al. [33]

3 2012 73.2–198.6 171.4 Wang et al. [67]

8 2012 72.1–227.0 214.7 This study

8 2015 80.0–231.8 189.7 This study

Shijiazhuang 4 2007 52.5–123.4 134.8 Wang et al. [67]

8 2012 70.5–128.9 82.9 This study

8 2015 72.0–120.3 67.1 This study

Tangshan 4 2010 47.8–188.1 293.7 Wang et al. [67]

8 2012 69.1–281.8 307.9 This study

8 2015 72.7–264.7 264.1 This study

Handan 5 2008 26.1–86.0 229.1 Wang et al. [67]

2 2014 61.3–104.9 71.0 Wang et al. [67]

8 2012 60.9–130.3 114.0 This study

8 2015 64.5–153.1 137.4 This study

Shanghai 2 2006 179.9–189.1 5.1 Chen et al. [64]

4 2010 112.6–420.9 273.6 Wang et al. [67]

Paris 2 2005 44.7–50.3 12.5 Chen et al. [64]

London 2 2003 28.1–32.4 15.1 Chen et al. [64]

Los Angeles 2 2000 64.5–77.6 20.4 Chen et al. [64]

Manhattan 2 2005 2.8–7.4 161.8 Chen et al. [64]

Salt Lake City 2 2011 3.2–3.8 20.8 Gurney et al. [65]

Indianapolis 2 2011 3.5–4.0 12.5 Gurney et al. [65]

Northeastern U.S. cities 4 2011 NA 50–250 Gately and Hutyra [66]
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higher, and national-data-based inventories were 14% 
lower in 2012. Compared with city-data-based invento-
ries, the lower estimates (53–75%) in the industrial cit-
ies of Tangshan and Handan resulted in higher estimates 
(47–160%) in Beijing and Tianjin for national-data-based 
inventories. Due to the more complete data of industrial 
enterprises above the state designated scale, the differ-
ences between city statistical data-based estimates and 
provincial statistical data-based estimates decreased 
from 60% to approximately zero from 2000 to 2012, indi-
cating the improvement in local statistical authorities. 
Spatially, all datasets agreed with high emissions in the 
triangular spatial distribution pattern of Beijing-Tianjin-
Tangshan and low emissions in the northern parts of 
Zhangjiakou and Chengde. The implications of the con-
sistent spatial distribution patterns recognized by these 
inventories provide useful information for the efficient 
deployment of monitoring instruments, and in return, 
the independent measurements from these areas will 

increase our confidence in inventories and thus provide 
support for policy makers in joint emissions reductions.
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