
Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Spatiotemporal continuous estimates of PM2.5 concentrations in China,
2000–2016: A machine learning method with inputs from satellites,
chemical transport model, and ground observations☆

Tao Xuea,b, Yixuan Zhengb, Dan Tongb, Bo Zhengc, Xin Lib, Tong Zhua, Qiang Zhangb,⁎

a BIC-ESAT and SKL-ESPC, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
bDepartment of Earth System Science, Tsinghua University, Beijing 100084, China
c State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

A R T I C L E I N F O

Handling Editor: Yong-Guan Zhu

Keywords:
Fine particulate matter
Satellite remote sensing
Aerosol optical depth
Machine learning

A B S T R A C T

Ambient exposure to fine particulate matter (PM2.5) is known to harm public health in China. Satellite remote
sensing measurements of aerosol optical depth (AOD) were statistically associated with in-situ observations after
2013 to predict PM2.5 concentrations nationwide, while the lack of surface monitoring data before 2013 have
created difficulties in historical PM2.5 exposure estimates. Hindcast approaches using statistical models or
chemical transport models (CTMs) were developed to overcome this limitation, while those approaches still
suffer from incomplete daily coverage due to missing AOD data or limited accuracy due to uncertainties of CTMs.
Here we developed a new machine learning (ML) model with high-dimensional expansion (HD-expansion) of
numerous predictors (including AOD and other satellite covariates, meteorological variables and CTM simula-
tions). Through comprehensive characterization of the nonlinear effects of, and interactions among different
predictors, the HD-expansion parameterized the association between PM2.5 and AOD as a nonlinear function of
space and time covariates (e.g., planetary boundary layer height and relative humidity). In this way, the PM2.5-
AOD association can vary spatiotemporally. We trained the model with data from 2013 to 2016 and evaluated its
performance using annually-iterated cross-validation, which iteratively held out the in-situ observations for a
whole calendar year (as testing data) to examine the predictions from a model trained by the rest of the ob-
servations. Our estimates were found to be in good agreement with in-situ observations, with correlation
coefficients (R2) of 0.61, 0.68, and 0.75 for daily, monthly and annual averages, respectively. To interpolate the
missing predictions due to incomplete AOD data, we incorporated a generalized additive model into the ML
model. The two-stage estimates of PM2.5 sacrificed the prediction accuracy on a daily timescale (R2= 0.55), but
achieved complete spatiotemporal coverage and improved the accuracy of monthly (R2= 0.71) and annual
(R2= 0.77) averages. The model was then used to predict daily PM2.5 concentrations during 2000–2016 across
China and estimate long-term trends in PM2.5 for the period. We found that population-weighted concentrations
of PM2.5 significantly increased, by 2.10 (95% confidence interval (CI): 1.74, 2.46) μg/m3/year during
2000–2007, and rapidly decreased by 4.51 (3.12, 5.90) μg/m3/year during 2013–2016. In this study, we pro-
duced AOD-based estimates of historical PM2.5 with complete spatiotemporal coverage, which were evidenced as
accurate, particularly in middle and long term. The products could support large-scale epidemiological studies
and risk assessments of ambient PM2.5 in China and can be accessed via the website (http://www.meicmodel.
org/dataset-phd.html).

1. Introduction

Globally, ambient exposure to fine particulate matter (PM2.5, de-
fined as the particles with a diameter< 2.5 μm) has been identified as
one of the leading causes of harm to public health (Cohen et al., 2017).

Exposure-response functions that are derived from large-sample epi-
demiological studies (e.g., cohort studies) are essential to quantify the
disease burden of PM2.5 (Burnett et al., 2014). Currently, in widely used
exposure-response functions, the risks posed by high concentrations of
PM2.5 remain insufficiently studied, or are approximated according to
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the effects of other particles (e.g., from tobacco smoking). During the
first 10 years of the 21st century, China became one of the most pol-
luted countries worldwide, in terms of PM2.5, because of rapid urba-
nization (Cohen et al., 2017). To fight against the poor air quality,
China initiated rapid reductions in anthropogenic emissions of PM2.5

from 2013 onwards (Zheng et al., 2017) via the China clean air action
plan (China State Council, 2013). This policy-driven air quality change
in China provides a quasi-experimental scenario to study the health
effects of high doses of PM2.5. However, the lack of historical PM2.5 data
in China limits such studies, as few in-situ observations of PM2.5 were
performed on a national scale before 2013 (Ma et al., 2016). Accurate
estimate of historical air pollution is a key requirement for health-re-
lated studies of PM2.5 in China.

Satellite remote sensing of aerosol optical depth (AOD) has proven
to be an effective measurement of particulate matter pollution at the
surface, and has been recorded by multiple sensors, including the
moderate-resolution imaging spectroradiometer (MODIS), which has
been in operation since 1999, and started to officially release data since
2000 (Wang and Christopher, 2003; van Donkelaar et al., 2015). A
variety of statistical approaches, including linear mixed effect (LME)
regression (Ma et al., 2016), geographically weighted regression (Ma
et al., 2014; van Donkelaar et al., 2016; You et al., 2016), generalized
additive model (GAM) (Zou et al., 2017), statistical downscaling model
(Chang et al., 2014; Lv et al., 2016), support vector machine (Hou et al.,
2014), random forest (Hu et al., 2017), neural networks (Di et al., 2016;
Gupta and Christopher, 2009; Zou et al., 2015), deep learning (Li et al.,
2017), and other machine learning (ML) models (Jiang and Christakos,
2018; Reid et al., 2015; Zhan et al., 2017) have been utilized to as-
sociate AOD with in-situ observations of PM2.5. Benefiting from the
global coverage of earth observing satellites (e.g., Terra and Aqua), and
the fine temporal resolution of geostationary satellites (e.g., Himawari-
8), such methods can extend the spatiotemporal scope of ground
monitoring networks, and have been used to evaluate ambient exposure
to PM2.5 on national and global scales (Cohen et al., 2017; Ma et al.,
2016; Zheng et al., 2017).

PM2.5 estimates derived from the statistical approaches usually de-
pend on in-situ measurements or their spatiotemporal autocorrelations,
such that their application is restricted to periods during which in-situ
observations are available. For instance, in China, most of the AOD-
based estimates were focused on PM2.5 variations occurring after 2013
(Ma et al., 2016). A few studies reconstructed historical concentrations
of PM2.5 over China (Lin et al., 2018; Ma et al., 2016) using statistical
approaches, which were more accurate at long timescale (e.g., annual
averages) than a short period (e.g., daily or monthly averages), partly
due to incomplete coverage of satellite-based AOD data. Continuous
spatiotemporal coverage of satellite-based PM2.5 estimates could be
derived with the input from global or regional chemical transport
models (e.g., Boys et al., 2014; Geng et al., 2015; van Donkelaar et al.,
2015), however, accuracy of those estimates are thought to be limited
due to uncertainties in chemical transport models (Bravo et al., 2012).

Due to a lack of constraints from in-situ observations, statistical
models that aimed to predict historical concentrations of PM2.5 based
on other variables were less accurate than those that aimed to extend
the spatiotemporal coverage of ground-surface networks through in-
terpolation of monitoring values (Lin et al., 2018; Ma et al., 2016). Few
existing statistical models were designed specifically to make historical
predictions. Therefore, an advanced model for AOD with higher accu-
racy over short timescales is required to assess historical exposure
(acute exposure in particular) to PM2.5 in China.

In this work, we developed a technique that we refer to as high-
dimensional expansion (HD-expansion), which expands the linear terms
of AOD and other covariates (e.g., meteorological variables) into a high-
dimensional space to characterize complicated effects (e.g., nonlinear
or interacting effects) of such predictors (Fig. 1). For example, the as-
sociation between AOD and PM2.5 has been found to vary both spatially
and temporally (Guo et al., 2017). Under HD-expansion, the coefficient

that links AOD to PM2.5 is parameterized as a function of multiple
spatiotemporal covariates (e.g., meteorological variables and satellite
nightlight) to mimic the space- and time-varying associations. In-
corporating the HD-expansion terms into a ML model, elastic-net (Zou
and Hastie, 2005), allowed regression of high-dimensional predictors
with in-situ observations of daily PM2.5. In accordance with previous
studies, we evaluated the accuracy of historical PM2.5 estimates using
annually iterated cross-validation (CV), which iteratively held out 1
calendar years' data as testing data, to examine the estimates produced
from a model trained by the remaining data in other years. We trained
and validated the model using daily PM2.5 observations from national
networks across mainland China from 2013 to 2016, and reconstructed
historical daily maps of PM2.5 at a spatial resolution of 0.1°× 0.1° from
2000 to 2016. After incorporating county-level census data from 2000
and 2010, we evaluated the spatiotemporal variations of both chronic
and acute exposure to PM2.5 in China.

2. Materials & methods

2.1. Datasets

In this study, we used similar inputs (e.g., in-situ PM2.5, satellite
AOD, satellite covariates, Weather Research and Forecasting (WRF) and
Community Multiscale Air Quality (CMAQ) simulations) during the
studying period as employed in our previous work on PM2.5 estimation
during 2014 (Xue et al., 2017). The sources and preparation of data are
described briefly below. For details, please refer to Xue et al. (2017) and
Zheng et al. (2017).

2.1.1. PM2.5 monitoring data
We obtained hourly observations of PM2.5 from multiple networks

in China, i.e., the networks of the China Environmental Monitoring
Center, Beijing Municipal Environmental Monitoring Center and
Guangdong Environmental Monitoring Center. After excluding dupli-
cate measurement sites, there were 1497 sites (as shown in Fig. S1) in
total, distributed over the mainland of China (i.e., excluding Hong
Kong, Macau, Taiwan and some islands in the South China Sea) during
2013–2016. The hourly PM2.5 data were converted into daily averages
and then incorporated into the regression models. Due to the lack of
nationwide monitoring networks of PM2.5 in China before 2013 (Ma
et al., 2016), only the in-situ observations during the recent four years
were involved into the model training procedures.

2.1.2. Satellite AOD and auxiliary variables
We obtained MODIS level 2 products of AOD at a spatial resolution

of 3 km (MOD04_3K and MYD04_3K) from the earth observing satellites
Terra (2000–2016) and Aqua (2002–2016), maintained by the National
Aeronautics and Space Administration (NASA) (Levy et al., 2015). Sa-
tellite remote sensing technology can measure the total column con-
centration of aerosol from the earth surface to the top of atmosphere,
and its product, AOD has been evidenced as a good predictor for ground
surface PM2.5 (Geng et al., 2015). From the raw AOD products, this
study extracted the “best estimate” retrievals, which passed quality
assurance tests. Satellite auxiliary variables including NO2 column
density, normalized difference vegetation index (NDVI), and nightlight
data, can act as surrogates for emissions, such as those from transpor-
tation (NO2 and nightlight), power plant (NO2) and residential usage
(NDVI and nightlight) (Ma et al., 2014; Zhang and Hu, 2017; Zheng
et al., 2016). Ozone Measurement Instrument level 2 products of NO2

(Krotkov et al., 2018) were produced by satellite Aura (2004–2016);
MODIS level 3 products of NDVI (Didan, 2015) were collected by Terra
(2000–2016); and 2013 annual nightlight data (National Geophysical
Data Center, 2018), at a spatial resolution of 1 km, were produced from
the visible and infrared sensors of the Defense Meteorological Satellite
Program, and were distributed by the National Centers for Environ-
mental Information (NCEI). All satellite data, except nightlight data,
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were downloaded from https://search.earthdata.nasa.gov. Nightlight
data were downloaded from the NCEI website (https://ngdc.noaa.gov/
eog/dmsp.html).

2.1.3. WRF and CMAQ simulations
For the period 2000–2016, we simulated maps of meteorological

variables including temperature, wind speed and direction, relative
humidity, pressure, and planet boundary layer height using the WRF
model (ver. 3.5.1) (Skamarock et al., 2008), which utilized the National
Centers for Environmental Prediction Final Analysis (NCEP-FNL) re-
analysis data as initial and boundary conditions. Driven by the outputs
of the WRF model, we also simulated concentrations of PM2.5 and their
five major components, i.e., NO3

−, SO4
2−, elemental carbon (EC), or-

ganic carbon (OC) and NH4
+, based on the 2000–2016 inventories from

the Multi-resolution Emission Inventory of China model (http://
meicmodel.org/) and using the CMAQ model (ver. 5.1) (US EPA,
2015). The WRF-CMAQ model system mimics the physical and che-
mical processes of multiple air pollutants, including their emissions,
dispersions, transports, atmospheric chemical reactions, and deposi-
tions, using the technology of computer simulation. Therefore, the WRF
simulates acted as the predictors for the climate field that affected
PM2.5 concentrations, and the CMAQ simulates provided prior knowl-
edge for the spatiotemporal variations of PM2.5. The original horizontal
resolution of both the WRF and CMAQ simulations was 36 km×36 km.
The hourly numerical outputs were first averaged into daily means by
pixel. For further details of the WRF and CMAQ model settings, please
refer to our previous publications (Xue et al., 2017; Zheng et al., 2017),
which applied the same model settings.

2.2. Data preparation

To match all the inputs spatially, we first averaged (for AOD, NDVI
and nightlight), resampled (for NO2) or downscaled (for WRF and

CMAQ outputs) the raw data into a gridded map of 0.1°× 0.1° re-
solution over China. The downscaling method was based on an inverse
distance weighted average. In the previous study (Xue et al., 2017), we
have evidenced that the downscaled CMAQ-simulated PM2.5

(0.1°× 0.1°) is slightly better correlated with the in-situ observations,
compared to the raw CMAQ output (36 km×36 km). The in-situ ob-
servations of PM2.5 were also assigned to each pixel of the grid for
matching with the inputs. For the monitors that located in the same
pixel, we further calculated average of their in-situ observations in each
day. In terms of the temporal resolution, nightlight data were annual
values; satellite NO2 and NDVI data were in monthly means to increase
the spatial coverage; all other input values were daily averages. After
spatial resampling and temporal aggregation, there were still a few
missing monthly NDVI and NO2 values, which were interpolated using a
Kriging method. After data preparation, all inputs had complete spa-
tiotemporal coverage, except AOD. Aqua AOD data were first calibrated
using Terra AOD with a linear regression model (i.e. Terra
AOD~β×Aqua AOD+ α, where β and α denote the regression coef-
ficients derived from the co-located AOD data, and then were utilized to
calibrate all Aqua AOD), and then a combined AOD product with im-
proved spatial coverage (as shown in Fig. S2), was derived for regres-
sion analysis. NO2 before 2004, and a proportion of the NDVI data for
2000, were not available and thus were replaced by other values in the
same month (of 2004–2005 and 2000–2001 for NO2 and NDVI, re-
spectively). Monthly or yearly variable that was utilized as a tempo-
rally-constant predictor within the corresponding month or year, can
capture the spatial patterns and long-term trends of PM2.5.

2.3. Statistical analysis

The entire data analysis procedure is shown in Fig. 1. Briefly, to
derive the final estimates of historical PM2.5, we designed a two-stage
method, and applied it to the whole study domain. In stage I, we

Predictors (X)
Daily: 

MODIS AOD,
WRF meteorological variables,

CMAQ-simulated PM2.5 (PM2.5
CMAQ),

CMAQ PM2.5 species
Monthly: 

MODIS NDVI,
OMI NO2

Yearly: 
Nightlight

In-situ observations of daily 
PM2.5 (y)

A machine learning (ML) model: 
High-dimensional expansion (HD-expansion)

+ elastic-net regression

ML model
without AOD:

PM2.5
ML: CMAQ

ML model
with AOD:

PM2.5
ML: CMAQ + AOD

Missing value interpolation: 
Generalized additive model (GAM)

Final estimator of historical PM2.5: 
PM2.5

ML + GAM: CMAQ + AOD

argmin (y – Zβ)2 + α · |β| + (1-α)/2 · β2

Z := HD-expansion of X         …… (1)
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• Temporal convolution of X,
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CMAQ

PM2.5
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Fig. 1. Diagram of the statistical analysis (a) and illustration of the high-dimensional expansion (b).
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developed two separate ML models: with satellite AOD (ML:
CMAQ+AOD) and without satellite AOD (ML: CMAQ). Estimates from
the former model (PM2.5

ML: CMAQ+AOD) were more accurate, but the
latter (PM2.5

ML: CMAQ) had complete spatiotemporal coverage. In stage
II, to interpolate the missing values of PM2.5

ML: CMAQ+AOD, we devel-
oped a generalized additive model (GAM) with an offset of PM2.5

ML:

CMAQ. The details of the statistical modeling for each stage are presented
below.

2.3.1. Stage 1: ML model
In general, the associations between PM2.5 and its predictors are

known to be more complex than simple linear functions. Previous stu-
dies have utilized the spline expansion (also known as a GAM) to model
the nonlinear association between PM2.5 and AOD or other covariates
(Zou et al., 2017). However, such methods may still remain too sim-
plistic to properly characterize the associations. For instance, interac-
tions between different predictors (Guo et al., 2017) are not covered by
the technique, because a GAM usually assumes that the nonlinear ef-
fects of any two predictors are additive. To fully characterize the
complexity involved in modeling PM2.5, we developed an approach,
referred to as HD-expansion (Eq. 1 in Fig. 1), which expanded the
predictors in an analogous manner to a GAM. In this study, we used four
types of expansion. First, we considered three-way interaction terms,
using a predictor set of three variables (xi, i= 1, 2, 3) as an example.
Under the three-way interaction, the predictors are expanded as a set of
[x13, x12x2, x12x3, x1x22, x1x32, x1x2x3, x23, x22x3, x2x32, x3, x12, x1x2,
x1x3, x22, x2x3, x32, x1, x2, x3]. In this way, we captured the variance in,
and nonlinearity of, the association between PM2.5 and AOD. Putting all
AOD-based predictors together, the regression equation is given by
y~β1AOD+ (β2RH2+ β3PBL2+ β4RH∙PBL+…+ βk+1RH+ βk+2P-
BL+…)AOD + (βq+1RH+ βq+2PBL+…)AOD2+ βl+1AOD3+…,
where k, q, or l denotes the number of coefficients located in the
equation before the term βk+1, βq+1 or βl+1, respectively. The above
equation illustrates the three-way interactions of AOD, RH and PBL,
and the omitted part include interactions between AOD and the other
pairs of predictors (i.e., CMAQ-WRF simulates, NO2, NDVI and night-
light), which are parameterized analogously as a large number of linear
terms. In this way, we parameterized the correlation between PM2.5 and
AOD as a nonlinear function of other spatiotemporal covariates, when
linking all predictors (including AOD) to the in-situ observations.
Second, we considered spatial convolution for all of the predictors.
Convolution is equivalent to the weighted average of the nearby values
of a predictor, and has been widely used to improve accuracy in neural
networks or other advanced algorithms used to develop AOD-based
estimators of PM2.5 (Di et al., 2016). Instead of using kernel-based
averages, in this study we used direct values of the site-collocated pixel
and its nearest 24 neighbors, and let the regression model determine the
weights of different pixels for all the predictors except for AOD, using
the elastic-net regularization (Zou and Hastie, 2005) as described
below. Considering the missing values of AOD, we separately derived
the averages for the nearest 8 or 24 pixels as the spatial convolution
predictors of AOD. Third, analogous to spatial convolution, we also
applied temporal convolution by incorporating the measurements ob-
tained 1 or 2 days previously, for all the predictors on a daily timescale.
Finally, as PM2.5 is a mixture of different species, its chemical compo-
sition may also influence the statistical association between in-situ
observations and AOD. To incorporate such variability, we replaced
CMAQ-simulated PM2.5 by its five major components (i.e., NO3

−,
SO4

2−, EC, OC and NH4
+); we refer to this approach as species ex-

pansion. Since the other PM2.5 components (e.g., dust) than the five
species can be derived by a linear combination of the six variables
(PM2.5, NO3

−, SO4
2−, EC, OC and NH4

+), and thus should not further
involved into the model. After HD-expansion,> 1000 linear terms were
generated. These linear terms may be highly correlated with each other,
and some of them can be less predictive for PM2.5. To deal with co-
linearity and redundancy simultaneously, we used the elastic-net

regression model (Zou and Hastie, 2005), which has been widely ap-
plied to the analysis of high-dimensional data. Through combining L-1
and L-2 regularization, the elastic-net model automatically selected the
most effective predictors among many highly correlated variables.
Therefore, the model is capable to regularize the HD-expansion terms,
which contained information overlapped with each other.

In stage I, we developed two ML models, which were identical to
each other in all aspects of model settings, except for involving AOD or
not. The ML model with AOD produced more accurate estimates of
PM2.5 (PM2.5

ML: CMAQ+AOD, N=407,049). The model involved 1075
HD-expansion terms. According to the results of elastic-net regulariza-
tion (i.e., absolute value of regression coefficients), the most predictive
variable in the ML was the linear term of AOD, followed by the linear
term of CMAQ-simulated PM2.5, WRF-simulated variables (tempera-
ture, relative humidity, pressure, and wind), satellite NO2, nightlight,
and the quadratic term of NDVI. However, the model's predictions de-
pend on the existence of AOD measurements and are thus incomplete.
To estimate PM2.5 at the spatiotemporal coordinates for which AOD was
missing, we developed another ML model without AOD (PM2.5

ML: CMAQ,
N=1,347,457). In this way, we sacrificed model accuracy but
achieved complete spatiotemporal coverage. The ML models were
trained by in-situ observations of PM2.5 and its predictors during
2013–2016, and were used to generate historical estimates (i.e.,
PM2.5

ML: CMAQ+AOD and PM2.5
ML: CMAQ) based on the predictors during

2000–2016.

2.3.2. Stage 2: GAM
To further decrease modeling errors in the complete estimator

(PM2.5
ML: CMAQ), we merged the estimates from the two ML models

using a GAM. For each day, the differences between PM2.5
ML: CMAQ+AOD

and PM2.5
ML: CMAQ were modeled as a function of spatial coordinates

(Eq. 2 in Fig. 1), such that differences at the coordinates without AOD
could be interpolated and then added back to PM2.5

ML: CMAQ. Therefore,
the final estimator of the two-stage approach is denoted by
PM2.5

ML+GAM: CMAQ+AOD.

2.4. Exposure and trend analysis

To calculate the long- and short-term exposure to PM2.5 in China, we
first derived county-level means of daily PM2.5 using the area-weighted
average approach. Combining the county-level PM2.5 with detailed
population data (i.e., number of residents) from the censuses of 2000
and 2010 (National Bureau of Statistics of China, 2003; National Bureau
of Statistics of China, 2012), we calculated the population-weighted
statistics on a national scale and for specific regions. To incorporate
demographic changes, we linearly interpolated the population data for
each county during 2000–2010. For 2011 and the years thereafter, we
assumed that the populations were stable and did not account for any
demographic changes. Considering the large uncertainty in the daily
estimates, exposure statistics were only presented in monthly or yearly
scale.

We also analyzed the trends in PM2.5 during 2000–2016 based on
the final estimator of the two-stage approach (PM2.5

ML+GAM:

CMAQ+AOD). Because of the relative large errors in daily estimates, the
trend analysis was based on monthly PM2.5. To remove seasonality, we
first derived the PM2.5 anomalies by subtracting the long-term averages
in the same month of different years from the monthly values, and then
calculated the linear trend using the least-squares approach, as in the
previous study (Ma et al., 2016).

To explore whether PM2.5 exposures and their trends are sensitive to
the demographic dynamics, we utilized alternative population estima-
tions, and re-calculated the related results. According to the exploratory
analysis (Table S1 and Fig. S3), the exposure estimates were not sen-
sitive to the demographic settings, which is consistent to the previous
worldwide study (Apte et al., 2015).
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2.5. Model validation

The state-of-the-art approach to evaluate model performance for the
historical prediction of PM2.5, based on satellite AOD, is annually it-
erated CV (Liang et al., 2018; Ma et al., 2016). This approach examines
how the model, trained by the data in one period, predicts the PM2.5 in
another period. In our annually iterated CV, we first non-randomly
divided the in-situ PM2.5 observations during 2013–2016 into four folds
by the calendar year, and then used one fold to test the estimates of a
model trained by the other three folds. To further explore the model
performance over the historical period, we developed an offset vali-
dation using data from the PM2.5 monitoring sites maintained by the US
embassies in Beijing (2008–2016), Chengdu (2012–2016), Guangzhou
(2011–2016), Shanghai (2011–2016) and Shenyang (2013–2016). Al-
though the offset validation was less representative due to its limited
spatial coverage, the US sites held the best available data (in terms of
temporal coverage, between-site comparability, and routine main-
tenance) for the historical time series in our study domain.

Long-term trends derived from historical estimates of PM2.5 may
have large uncertainties and should be further validated. Considering
that the historical PM2.5 trends (2000–2016) were estimated from a
model trained by a small set of recent observations (2013–2016), we
reproduced the two-stage estimates for the period 2013–2015 using
observed PM2.5 concentrations and other inputs from 2016 alone, and
compared the trends (η0) (2013–2015) derived from in-situ observa-
tions to those derived from the collocated estimates (η1). To statistically
quantify the consistency between the two trends, we first calculated the
difference between them (D= η0− η1) and its variance [V= var.
(η0− η1)], based on the least-squares trend estimators (and their
standard errors) for each pair of time series data located at each
monitoring site, and calculated the root mean square difference (RMSD)
as follows: RMSD= [mean(D2+V)]1/2. This equation combines the
biasness (D2) and variance (V) of the estimate-based trends (η1), when
using the observation-based trends as reference standards. We also
examined the hypothesis that there was no difference between the two
trends (D= 0) using Wald tests, and calculated the rate of rejection
(RoR) of the null hypothesis at different significance levels. RoR values
are given by the fraction of pairs of trends detected as statistically
different. Smaller RoR values reflect better agreement between two
trends.

All data analysis was performed in R software (R Core Team, 2017),
and statistical inference of the ML models was achieved using the R
package glmnet (Friedman et al., 2010). The final estimates are accessed
via the website (http://www.meicmodel.org/dataset-phd.html).

3. Results

3.1. Model validation results

Fig. 2 shows the results of the annually iterated CV for the historical
estimates of daily PM2.5, as produced by the original CMAQ simulation
(PM2.5

CMAQ) and the ML approaches without AOD (PM2.5
ML: CMAQ) and

with AOD (PM2.5
ML: CMAQ+AOD), at the spatiotemporal coordinates for

which AOD data were available. The PM2.5 estimates from the full ML
model (PM2.5

ML: CMAQ+AOD) were in good agreement with the in-situ
observations (CV correlation coefficient, R2= 0.61), with a root mean
square error (RMSE) of 27.8 μg/m3 that accounted for 47% of the mean
PM2.5 observations (defined as the relative prediction error, RPE) and
63% of the standard deviation of the PM2.5 observations (defined as the
normalized RMSE, NRMSE). The estimator was also shown to be un-
biased (mean bias= 2.02 μg/m3), but slightly over-smoothed (the slope
of the regression of predictions against the observations was 0.61). The
ML-based estimates (i.e., PM2.5

ML: CMAQ and PM2.5
ML: CMAQ+AOD) were

shown to be more accurate than the CMAQ simulations (R2= 0.38 for
PM2.5

CMAQ), but removing AOD from the predictors decreased the
model performance considerably (R2= 0.53 for PM2.5

ML: CMAQ).

Detailed CV results for the monthly and yearly averages are given in the
supplemental materials (Fig. S4). Averaging over time decreased the
modeling errors. For PM2.5

ML: CMAQ+AOD, the CV R2 was 0.68 and 0.75
for monthly and yearly averages, respectively.

Fig. 3 presents the results of annually iterated CV for the historical
estimates of daily PM2.5, produced by PM2.5

CMAQ, PM2.5
ML: CMAQ, and

the two-stage-estimates of PM2.5 (PM2.5
ML+GAM: CMAQ+AOD), at all

spatiotemporal coordinates (i.e., for those having or missing AOD va-
lues). For PM2.5

ML+GAM: CMAQ+AOD, the daily CV had an R2 of 0.55 and
a RMSE of 30.2 μg/m3, demonstrating moderate accuracy that was
lower than PM2.5

ML: CMAQ+AOD (R2= 0.61) but slightly higher than
PM2.5

ML: CMAQ (R2= 0.53). Although the two-stage estimator had the
same inputs as the one-stage estimator, its large error might be caused
by the uncertainty introduced by the GAM interpolation and more ac-
cumulation of the uncertainties of the inputs (e.g., the WRF-CMAQ si-
mulations). The corresponding CV results for the monthly and yearly
averages are shown in the supplemental materials (Fig. S5). Because of
the complete spatiotemporal coverage, the monthly and yearly averages
of PM2.5

ML+GAM: CMAQ+AOD included more samples than those of
PM2.5

ML: CMAQ+AOD, which partially explains why the average
PM2.5

ML+GAM: CMAQ+AOD (monthly R2= 0.71, yearly R2= 0.77) was
more accurate than that of PM2.5

ML: CMAQ+AOD (monthly R2= 0.68,
yearly R2= 0.75).

Fig. 4 presents the evaluation results of the final estimates,
PM2.5

ML+GAM: CMAQ+AOD, using the offset from the US embassy moni-
tors. The results of the offset validation were comparable to the results
of the CV. The R2 varied from 0.51 (Guangzhou) to 0.67 (Beijing) for
different cities, with an overall R2 of 0.66 for the combined data of the
five sites. In addition, the combined RPE was 48%, which ranged from
40% (Shanghai) to 49% (Beijing). Between cities, the variation in offset
validation values suggests a geographic heterogeneity in the modeling
error of PM2.5

ML+GAM: CMAQ+AOD, which depends on the spatially
varying features of the predictors, such as the emission inventory ac-
curacy or the fraction of missing AOD data. The offset validation results
are also presented as time series data in the supplemental materials
(Fig. S6). The time series indicates that PM2.5

ML+GAM: CMAQ+AOD ac-
curately predicted the temporal variation in PM2.5 over long timescales,
but only partially captured extreme PM2.5 pollution episodes over short
timescales.

Additionally, we contrasted the fitted results from the one-stage
(PM2.5

ML: CMAQ+AOD) or two-stage estimator (PM2.5
ML+GAM: CMAQ+AOD)

with the in-situ observations (Fig. S7), and visualized the comparisons
of their long-term averages (Fig. S1). Roughly speaking, the perfor-
mance of the fitted values ware very similar to that of the cross-vali-
dated values (Figs. 2–3), which suggests no over-fitness in the ML
models.

3.2. Estimated spatiotemporal patterns

Fig. 5 presents the spatiotemporal patterns of annual PM2.5, esti-
mated by the two-stage ML approach during 2000–2016. In 2000, the
North China Plain was the most PM2.5-polluted region. Other PM2.5

hotspots included the Gobi and Taklamakan Deserts, Sichuan Basin,
Northeast China Plain and Pearl River Delta (PRD). The historical es-
timates exhibited a similar pattern of long-term exposure to PM2.5

during 2000–2016. In most of the hotspots, except the PRD, residents
were consistently exposed to higher PM2.5 loadings (> 60 μg/m3) than
in other regions. For the most populous regions, particularly the three
metropolitan areas of the Beijing-Tianjin-Heibei (BTH) region, Yangtze
River Delta (YRD), and PRD, we also explored the spatiotemporal
variations in PM2.5 during 2000–2016, as shown in Fig. 5. Among these
three key areas, the BTH region was the most polluted, followed by the
YRD and PRD, where the population-weighted average PM2.5 con-
centrations during 2000–2016 were 89.0 μg/m3, 60.7 μg/m3 and
49.5 μg/m3, respectively. The long-term level of exposure to PM2.5 in
the BTH region was considerably above the national average of
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Fig. 2. Cross-validation results for different estimators on daily scale at the spatiotemporal coordinates for which aerosol optical depth (AOD) data were available.

N = 1,347,457
R2 = 0.425
RMSE = 37.4 µ g m3

NRMSE = 83 %
RPE = 68 %
Bias = 3.26 µ g m3

MAE = 24.7 µ g m3

Predicted ~ 0.63 *Observed+ 16.8

N = 1,347,457
R2 = 0.53
RMSE = 31.1 µ g m3

NRMSE = 69 %
RPE = 57 %
Bias = 2.08 µ g m3

MAE = 19.3 µ g m3

Predicted ~ 0.51 *Observed+ 24.6

N = 1,347,457
R2 = 0.554
RMSE = 30.2 µ g m3

NRMSE = 67 %
RPE = 55 %
Bias = 0.77 µ g m3

MAE = 18.9 µ g m3

Predicted ~ 0.56 *Observed+ 23.2

PM2.5
CMAQ PM2.5

ML: CMAQ PM2.5
ML + GAM: CMAQ + AOD

0 200 400 600 0 200 400 600 0 200 400 600

0

200

400

600

Observed PM2.5 (µ g m3)

Pr
ed

ic
te

d
PM

2.
5

(µ
g

m
3 )

0

1

2

3

Count (10n)

N = 48,609
R2 = 0.71
RMSE = 17.8 µ g m3

NRMSE = 54 %
RPE = 32 %
Bias = 1.05 µ g m3

MAE = 11.8 µ g m3

Predicted ~ 0.68 *Observed+ 16.7

Monthly average

0 100 200 300

0

100

200

300

Observed PM2.5 (µ g m3)

Pr
ed

ic
te

d
PM

2.
5

(µ
g

m
3 )

0.0

0.5

1.0

1.5

2.0

Count (10n)

N = 4,100
R2 = 0.767
RMSE = 10.1 µ g m3

NRMSE = 49 %
RPE = 18 %
Bias = 0.76 µ g m3

MAE = 7.6 µ g m3

Predicted ~ 0.74 *Observed+ 13.7

Yearly average

0 50 100 150 200

0

50

100

150

200

Observed PM2.5 (µ g m3)

Pr
ed

ic
te

d
PM

2.
5

(µ
g

m
3 )

0.0

0.5

1.0

Count (10n)

a

b

Fig. 3. Cross-validation results for different estimators at all spatiotemporal coordinates, including data for which AOD values were missing: (a) Performance of
different estimators on a daily timescale; (b) Performance of the two-stage estimator on monthly and yearly timescales.
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59.6 μg/m3. In terms of annual average PM2.5, the BTH region was most
polluted in 2007 (105.3 μg/m3), followed by 2006 (103.2 μg/m3) and
2013 (100.9 μg/m3); YRD was most polluted in 2011 (67.1 μg/m3),
followed by 2007 (67.0 μg/m3) and 2008 (65.6 μg/m3); PRD was most
polluted in 2007 (62.9 μg/m3), followed by 2006 (59.9 μg/m3) and
2005 (59.1 μg/m3).

3.3. Long-term trends of PM2.5 in China

To further explore the temporal variations in PM2.5 concentrations,
we generated time series of the population-weighted averages of
monthly PM2.5 for the three key areas of BTH, YRD and PRD, as pre-
sented in Fig. 6. Clear seasonal patterns were found in monthly PM2.5,
in that levels were higher in cooler seasons and lower in warmer ones.
The temporal trends in PM2.5 were found to be non-monotonous, and
distributed heterogeneously across locations. Fig. 6 also shows the
probability distribution of exposure to different categories of air quality
(i.e., excellent to severely polluted) for each month, which exhibited a
similar temporal profile to PM2.5 concentrations. For instance, during
2000–2016, there were 1495 (24.1%, of the 17 years' period) polluted
days and 179 (2.9%) heavily-or-above polluted days nationwide, in
terms of population-weighted averages.

To statistically characterize the long-term trends in population-
weighted average monthly PM2.5 concentrations, nationwide and for
the three key areas, we calculated PM2.5 anomalies and derived linear

slopes for the periods 2000–2016, 2000–2007, 2008–2012 and
2013–2016, as presented in Fig. 7. According to these results, due to the
rapid economic growth and urbanization that occurred during
2000–2007, the population-weighted exposure to PM2.5 increased at a
rate of 3.78 (95% confidence interval (CI): 2.66, 4.91) μg/m3/year in
the BTH region, 2.27 (1.57, 2.96) μg/m3/year in the PRD, 1.76 (1.30,
2.22) μg/m3/year in the YRD, and 2.10 (1.74, 2.46) μg/m3/year na-
tionwide. Driven by emissions-reduction policies, such as the China
Clean Air Act, ambient PM2.5 levels decreased from 2013 by 8.68 (4.17,
13.20) μg/m3/year, 4.91 (3.08, 6.74) μg/m3/year, 4.51 (2.78, 6.25) μg/
m3/year, and 4.51 (3.12, 5.90) μg/m3/year in the BTH region, PRD,
YRD and nationwide, respectively. During 2008–2012, no significant
trends of PM2.5 were observed nationwide, and in the BTH region and
YRD. In the PRD, PM2.5 began to decrease after 2007, by 2.30 (0.77,
3.83) μg/m3/year for the period 2007–2012. The plateau in PM2.5

concentrations during 2008–2012 may have been caused by the coun-
teracting effects of the growth in industrial emissions (Klimont et al.,
2013; Lu et al., 2011), and to the decreased power-plant emissions
caused by installation of flue gas desulfurization devices (Xu, 2011). A
gridded map of the estimated linear trends is presented in Fig. S8.

Based on in-situ observations of PM2.5 in 2016, the validation results
of different methods for estimated PM2.5 concentration trends during
2013–2015 were documented in supplemental Table S2. The final es-
timator (PM2.5

ML+GAM: CMAQ+AOD) was correlated with the in-situ ob-
servations, with an R2 of 0.53 and 0.70 for daily and monthly averages,

Fig. 4. Offset validation for the historical estimates of fine particulate matter (PM2.5) (PM2.5
ML+GAM: CMAQ+AOD).
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respectively. The mean difference (D) between the least-square trend of
in-situ observations and that of PM2.5 estimates was 0.16 μg/m3/year,
with a mean standard deviation (V1/2) of 1.42 μg/m3/year and a RMSD
of 2.00 μg/m3/year for PM2.5

ML+GAM: CMAQ+AOD. The RoR displayed
good agreement between PM2.5

ML+GAM: CMAQ+AOD and observations of
PM2.5. At a significance level of 0.05, only 1% of all pairs of least-square
trends were found to be statistically different. A comparison of the
different estimators suggests that they performed equally well in terms
of evaluating trends in historical PM2.5. We further examined the con-
sistency between the estimated trends of PM2.5 during 2000–2016 for
the three megacity regions and nationwide, using different methods.
Details of these results are presented in Fig. S9, and the national trends
are briefly summarized in Fig. S10. To explore how CMAQ simulations
affected the estimated trends, we also included another estimator
(PM2.5

ML: AOD), which was generated by the ML model with AOD data,
other satellite covariates and meteorological variables only. We found
no significant differences in the trends estimated by the different
models.

4. Discussion

Reconstructing the historical time series of PM2.5 from satellite AOD

is difficult, because in the existing models, the PM2.5-AOD association
cannot be estimated accurately at different spatiotemporal coordinates
without monitoring data. The PM2.5-AOD association has been found to
vary both temporally and spatially, and is too complex to characterize
using a linear model with a restricted number of covariates. Therefore,
in previous statistical models that estimated ground surface PM2.5 from
AOD measurements (e.g., LME), the association was fitted locally at
specific coordinates in the space and time dimensions, and then applied
to PM2.5 predictions at neighboring coordinates. The local fit approach
is not appropriate for estimating historical PM2.5 from AOD. To over-
come this difficulty, Ma et al. (2014) assumed that the PM2.5-AOD re-
lationship was identical for the same days between different years, and
estimated historical PM2.5 in China during 2004–2014 for the first time.
The model performed well over long timescales (monthly and yearly),
but not for daily averages; this limited the usage of AOD for the as-
sessment of short-term exposure to PM2.5. The logic underlying the
assumption of Ma et al. (2014) is that hidden factors (e.g., meteor-
ological fields) that can physically change the PM2.5-AOD association
tend to be similar on the same calendar day of different years, because
of the general periodic patterns in atmospheric systems. Instead of as-
suming between-year similarity, we characterized the hidden factors
that determined the PM2.5-AOD relationship using HD-expansion of a
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Fig. 5. Spatiotemporal patterns of PM2.5 estimated over Eastern China during 2000–2016.
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few spatiotemporal and spatial covariates. Through modeling the
higher order interactions between AOD and other covariates in a re-
gression model, the PM2.5-AOD association was parameterized as a
nonlinear function of such covariates. Driven by the spatiotemporal
variations in the covariates, the PM2.5-AOD association in our ML model
was changed for different coordinates and different periods. To illus-
trate how the HD-expansion improved the model performance, we de-
veloped a batch of alternative models and evaluated them by annually
iterated CV (Fig. S11). The results showed that the set of three-way
interaction terms, i.e., the technique used to model the varying asso-
ciation between AOD and PM2.5, played a key role in reducing the
modeling error.

Both satellite AOD measurements and CMAQ simulations have been
applied independently to extend the spatiotemporal coverage of in-situ
observations of PM2.5. Historical estimates combined both of these
approaches, similar to our previous study, which indicated that CMAQ-

simulated PM2.5 was less predictive than AOD. In the current study, we
compared models without AOD or CMAQ simulations to the full model,
which consistently showed that AOD played a more significant role in
achieving low modeling errors, especially with respect to the variance
of errors (Fig. S11). This also explains why the historical estimates of
daily PM2.5 at the spatiotemporal coordinates where AOD data were
available were more accurate than those at the coordinates where AOD
values were missing. However, the advantages of the CMAQ simula-
tions should not be overlooked: incorporating CMAQ outputs into a
regression with AOD can further reduce the modeling error (Fig. S11),
and CMAQ simulations provide prior knowledge on chemical species
and the distribution of PM2.5 with complete spatiotemporal coverage.
Although the direct outputs of CMAQ (PM2.5

CMAQ) had low accuracy,
calibrating them by the ML model without AOD (PM2.5

ML: CMAQ) didn't
change the complete spatiotemporal coverage, and could moderately
improve the model performances (daily R2=0.43 vs. 0.53, Fig. 3a),

Fig. 6. Time series of population-weighted average monthly PM2.5 concentrations and their smoothed trends (dashed lines) for the period 2000–2016. The colored
bars (right axis) represent the probability distribution of exposure to different categories of air quality in each month.
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particularly in medium term (monthly R2= 0.54 vs. 0.69, Fig. S5a) or
long term (yearly R2=0.53 vs. 0.75, Fig. S5b). In addition, due to the
(non-random) incomplete satellite measurements, AOD-based estimates
may ignore some PM2.5 hotspots in China. Therefore, the long-term
average PM2.5 concentrations of AOD-based estimates could be slightly
biased. This may partially explain why the complete estimator (PM2.5
ML+GAM: CMAQ+AOD) was less accurate than the incomplete estimator
(PM2.5

ML: CMAQ+AOD) on a daily timescale (R2= 0.55 vs. 0.61), but
more accurate on monthly (R2= 0.71 vs. 0.68) and yearly timescales
(R2= 0.77 vs. 0.75).

We also compared our estimates to the results of previous studies
(Table 1). To enable a valid comparison, we extracted a subset of our
annually iterated CV according to the periods and study domains of

previous studies. The results indicate that our estimates were as good
as, or slightly better, than previous approaches in terms of model ac-
curacy. For instance, the CV R2 was reported as 0.41 for the state-of-the-
art model developed by Ma et al. (2016) for daily average PM2.5 con-
centrations, but we improved this to 0.60 in our ML-based estimates.
However, we cannot conclude that our model over-performs versus
previous estimates based on this comparison alone: the CV R2 only
reflects the linear correlation between the predictions and observations,
and other studies had advantages in different aspects. For example,
using advanced products of AOD, Liang et al. (2018) generated an es-
timator with a finer spatial resolution (1 km×1 km), which was able to
better characterize the intra-city variability in PM2.5 than our estimates.
This comparison is only intended to validate our results and should not
be over-interpreted. Different from the extant AOD-based PM2.5 esti-
mates, which mainly included meteorological variables as auxiliary
predictors, our approach further incorporated CMAQ-simulated PM2.5.
According to our sensitivity analyses (Fig. S11), the ML model without
CMAQ simulates (R2=0.57), which has similar model inputs with the
previous ones, performed not as well as the full model (R2=0.61). The
result may partially explain different model performances between
studies (Table 1).

Based on the estimates with complete spatiotemporal coverage, we
evaluated the historical trends in PM2.5 in China, both nationwide and
in three megacity areas, during 2000–2016. Because of data availability
constraints, these trends have rarely been studied. Cohen et al. (2017)
estimated annual and global maps of PM2.5 during 1990–2015, and
reported that PM2.5 in China increased linearly from 2000 (population-
weighted PM2.5 of 50 μg/m3) to 2010 (58 μg/m3), and then plateaued
during 2011–2015. Ma et al. (2016) estimated historical PM2.5 in China
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Fig. 7. Linear trends (with 95% confidence intervals) in estimated PM2.5 anomalies during 2000–2016 in three megacity regions of China, and nationwide. The P-
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Table 1
Comparison of the accuracy of our models (#PM2.5

ML: CMAQ+AOD and
$PM2.5

ML+GAM: CMAQ+AOD) with that of previous estimates, based on annually
iterated CV. *The study domain was defined as a rectangle around Beijing
(longitude 114°–118.5°, latitude 38°–42°).

Validation of historical PM2.5 estimates in previous studies CV R2 reported in this
study

Study Domain Period Temporal
resolution

CV R2 ML# ML+GAM$

Ma et al.,
2016

China Jan–Jun,
2014

Daily 0.41 0.60 0.57
Monthly 0.73 0.67 0.74

Liang et al.,
2018

Beijing⁎ 2013 Monthly 0.42 0.85 0.78
2014 0.55 0.78 0.77

PM2.5, particulate matter; CV, cross-validation; M, machine learning; GAM,
generalized additive model.
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during 2004–2013 based on an LME of AOD, and reported an increasing
trend of 1.97 (95% CI: 1.22, 2.72) μg/m3/year during 2004–2007,
followed by a decreasing trend of 0.46 (0.14, 0.78) μg/m3/year. Liu
et al. (2017) estimated the historical time series of PM2.5 during
1957–1964 and 1973–2014 using visibility data from 674 meteor-
ological sites across China, and reported an increasing trend of 0.24
(0.14, 0.34) μg/m3/year during 1996–2005 and a decreasing trend of
0.34 (0.16, 0.52) μg/m3/year during 2006–2014. Lin et al. (2018) de-
rived high-revolution PM2.5 in annual scale across China during
2001–2015 based on an empirical algorithm of MODIS AOD, and re-
ported a nation-scale trend of 0.04 μg/m3/year, −0.65 μg/m3/year,
−2.33 μg/m3/year in 2001–2005, 2005–2010 or 2011–2015, respec-
tively. Boys et al. (2014) estimated global PM2.5 during 1998–2012 by
scaling satellite AOD using a chemical transport model, and found that,
in East Asia, PM2.5 increased until 2007 at a rate of 0.79 (0.26, 1.32)
μg/m3/year. Considering the differences in temporal periods, study
domains, data availability and modeling accuracy, the long-term trends
in PM2.5 of previous studies are comparable to those of the present
study. Previous studies were in good agreement with respect to the
increasing PM2.5 trends before 2005 or 2007. Recently, satellite-based
estimates and in-situ measurements showed a rapidly decreasing trend
in PM2.5 (by 4.7 μg/m3/year in 2013–2015 or 3.4 μg/m3/year in
2015–2017) after 2013 (Ben et al., 2018; Zheng et al., 2017), which is
consistent with our model results.

In addition, the estimated historical trends in PM2.5 were consistent
with the commencement of emissions reduction policies nationwide,
and in certain individual regions. According to our results, the in-
creasing trend in PM2.5 ended in 2007 and then PM2.5 plateaued during
2008–2012. During 2000–2010, energy consumption driven by eco-
nomic growth, for example in capital formation and exports, was found
to have significantly contributed to the increasing emissions of primary
PM2.5 (Guan et al., 2014). For example, from 2005 to 2010, it was re-
ported that thermal power generation increased by 63%, and vehicle
production by 220% (Zhang et al., 2012). Meanwhile, China began to
strengthen its emissions reduction policies to mitigate decreasing air
quality. For instance, driven by the widespread installation of flue gas
desulfurization systems, reductions in SO2 emissions of 1.5 and 17.5
million tons were achieved in 2005 and 2010, respectively (Zhang
et al., 2012). However, the benefits of such emissions reduction
schemes may have been offset by increased energy usage across most of
China, except for the PRD. PM2.5 in the PRD exhibited a decreasing
trend after 2008, which was dominated by reductions in organic com-
pounds and sulfate (Fu et al., 2014). The long-lasting episodes of PM2.5

in central and eastern China (including the BTH region and YRD) in
winter 2012 and January 2013 (Fig. 6) attracted widespread attention
in Chinese society (Wang et al., 2014). Triggered by this air pollution
crisis, China implemented the most stringent policies to control air
pollution to date, by introducing the China Clean Air Act. Under this
act, multiple approaches, including production structure changes, clean
energy adoption and the designation of new air quality criteria were
applied to reduce pollutant emissions, and provincial governments
achieved air quality targets before 2017. For example, the BTH region
planned to reduce annual concentrations of PM2.5 by 25%. Driven by
the Clean Air Act, PM2.5 levels began to decline. In 2016, the popula-
tion-weighted PM2.5 was reduced to 49.9 μg/m3, slightly lower than
that in 2000 (52.9 μg/m3). However, for approximately 79% of Chinese
citizens, the annual exposure to PM2.5 in 2016 was still above the air
quality limit of 35 μg/m3, which indicates that emissions reductions are
still required in China. Additionally, although our previous study has
evidenced that the recent decreasing trend of PM2.5 was mainly attri-
butable to the emission control policies rather than the meteorological
variations, the air quality influences of the climate changes should not
be ignored. However, most of extant evidences in China (e.g., Liang
et al., 2017) were from local areas or focused on short/medium-term
periods. The nexus of climate and air quality can be complexly de-
pended on physical processes (e.g., diffusions and transfers) driven by

the meteorological field, optical effects of aerosols (e.g., radiative for-
cing), atmospheric chemical reactions, and etc. (Hong et al., 2017).
Therefore, quantifying the PM2.5 variations attributable to the climate
changes is beyond the capability and scope of this study. Future na-
tionwide studies on this issue are warranted.

Due to issues with data availability (e.g., lack of routine monitoring
data) or quality (e.g., incomplete coverage of AOD-based estimates),
most previous health-related studies on a national scale in China fo-
cused on the chronic effects of PM2.5. For instance, the data products of
Ma et al. (2016) have been utilized for risk assessment and cohort
studies of the mortality risks of PM2.5. However, recent epidemiological
findings have suggested that exposure to PM2.5 could cause both acute
and chronic adverse health effects (Shi et al., 2015). Although the ex-
posure-response functions between long-term exposure to PM2.5 and
disease have been well studied, both globally and in China, ignoring the
acute health effects of PM2.5 may lead to under-estimation of the health
impacts of air pollution. Assessment of acute exposure to PM2.5 requires
accurate historical estimates on daily timescales that, before the current
study, were rarely available for China on a national scale. Our data
products will support epidemiological studies on both the acute and
chronic effects of heavily PM2.5- polluted air, as well as other health-
related studies on how public health changes in developing countries
during rapid transitions in ambient air quality.

The major limitation of this study was the uncertainty in our esti-
mates. Although the annually iterated CV was the best-available
method to evaluate the historical predictions of PM2.5, it could not di-
rectly quantify the model errors or uncertainty in the estimates. The
offset validation using US embassy PM2.5 observations helped to
quantify a proportion of the historical estimates after 2008, but this
might be not particularly representative due to the restricted spatial
coverage of the monitoring sites. Furthermore, due to massive com-
puting burden of the complex ML model and knowledge gaps in un-
certainties of the multiple inputs (e.g., CMAQ-WRF simulations),
quantifying the pointwise standard errors or CIs for our historical PM2.5

estimates is beyond our capability or study scope. When applying our
products to health-related studies of PM2.5, including epidemiological
studies and risk assessments, ignoring the uncertainty may bias results.
In terms of epidemiology, large uncertainties in PM2.5 concentrations
may result in exposure misclassification and can reduce statistical
power. Our data products are more appropriate for the studies with
samples sufficiently large to guarantee adequate statistical power to
detect associations between PM2.5 and adverse health outcomes.
Although as far as we know, our products may be the best-available
daily PM2.5 estimates with complete spatiotemporal coverage during
2000–2016 in China, extra analysis on the impacts of uncertainty on the
robustness of the associations is required, as done in our previous study
(Xue and Zhang, 2018). For risk assessments, utilizing our products may
lead to underestimation of the health burdens attributable to PM2.5 due
to the slight bias in our estimates (e.g., a bias of 1.0 μg/m3 in monthly
averages). In addition, the AOD predictors were derived from MODIS
level 2 products at an original resolution of 3 km, to allow estimates of
PM2.5 at a finer resolution in future studies. However, only Dark Target
AOD was incorporated into the 3 km products, which had lower spatial
coverage than the combined AOD from both the Dark Target and Deep
Blue products (10 km×10 km MODIS AOD). Considering the compu-
tational complexity, in this study we did not further examine the per-
formance of the ML model by using the combined AOD data as alter-
native inputs.

5. Conclusions

This study describes an alternative method to model the determi-
nistic association between PM2.5 and AOD with adjustments of other
inputs. In comparison to models using only linear terms of the pre-
dictors, the HD-expansions herein were better able to characterize the
complexities in PM2.5-AOD associations and produced more accurate
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AOD-based estimates of PM2.5 where monitoring networks did not exist.
The two-stage estimator has been shown to be comparable to other
AOD-based estimators for monthly average PM2.5 concentrations, and
to perform slightly better over daily timescales (Table 1). Using the
estimator, we quantified the population exposures to PM2.5 and derived
their long-term trends in China, from 2000 to 2016. During the period,
we reported a population-weighted average of 59.6 μg/m3 and found an
inverse U-shape trend with the plateau between 2008 and 2012, in
nationwide exposure to ambient PM2.5. Our products will support stu-
dies on the health effects of both acute and chronic exposure to ambient
PM2.5 in China, which are critical to fill knowledge gaps with respect to
exposure-response functions for heavily-polluted air.
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