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ABSTRACT: The carbon intensity of economic activity, or CO2 emissions per unit
GDP, is a key indicator of the climate impacts of a given activity, business, or region.
Although it is well-known that the carbon intensity of countries varies widely
according to their level of economic development and dominant industries, few
studies have assessed disparities in carbon intensity at the level of cities due to limited
availability of data. Here, we present a detailed new inventory of emissions for 337
Chinese cities (every city in mainland China including 333 prefecture-level divisions
and 4 province-level cities, Beijing, Tianjin, Shanghai, and Chongqing) in 2013, which
we use to evaluate differences of carbon intensity between cities and the causes of
those differences. We find that cities’ average carbon intensity is 0.84 kg of CO2 per
dollar of gross domestic product (kgCO2 per $GDP), but individual cities span a large
range: from 0.09 to 7.86 kgCO2 per $GDP (coefficient of variation of 25%). Further
analysis of economic and technological drivers of variations in cities’ carbon intensity
reveals that the differences are largely due to disparities in cities’ economic structure that can in turn be traced to past investment-
led growth. These patterns suggest that “carbon lock-in” via socio-economic and infrastructural inertia may slow China’s efforts
to reduce emissions from activities in urban areas. Policy instruments targeted to accelerate the transition of urban economies
from investment-led to consumption-led growth may thus be crucial to China meeting both its economic and climate targets.

■ INTRODUCTION

Since 2006, China has emitted more CO2 per year than any
other country;1,2 in 2013, Chinese emissions reached 9.1 Gt
CO2,

3 or 27% of the global total. The rapid increase in Chinese
emissions since 2000 reflects sharp increases in the nation’s
economic output and energy use, along with persistently high
carbon intensity due to its reliance on coal.4−6 These drivers are
particularly evident in industrializing provinces in midwestern
China, where improvements in industrial efficiency were
outpaced by surging energy demand.7,8 Although Chinese
emissions have leveled off (or decreased slightly) between
2013−2016 because of a decline in coal use,9,10 it remains
unclear if this stabilization reflects a nascent but permanent
decoupling of emissions from economic growth or if Chinese
emissions will rise again when the global economy fully
recovers from the Great Recession of 2007−2008. The latest
literature11,12 indicates that China's coal use and CO2 emissions
rose again in 2017, which drove global emissions up for the first
time in four years.

Under the Paris Agreement, China has pledged reductions in
carbon intensity, to 60−65% below 2005 levels by 2030. In the
interim, China’s 13th five-year plan aims for an 18% reduction in
carbon intensity below 2015 levels by 2020equivalent to a
46% reduction from 2005 levels. These goals represent an
ambitious restructuring of the Chinese economy that curbs
emissions without undermining economic growth.13

Perhaps one of the greatest barriers to the improved carbon
intensity goal is the ongoing urbanization of China.14−17 Rural-
to-urban migration has been a major contributor to the nation’s
economic development, and the Chinese government is
planning for 200 million new urban dwellers between now
and 2030, increasing the fraction of Chinese living in cities from
56% to approximately 70%.18 However, along with gains in
income and living standards come increases in energy use and
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consumption related to these new urban residents, which could
drive up the country’s CO2 emissions.19 In recognition of this
trade-off, in 2012 China began pilot projects in 36 cities meant
to demonstrate a low-carbon pathway of urban growth, and the
number of these pilot cities will soon be expanded to 100.20

There is also an increasing number of integrated assessment
model studies aimed at translating national emissions targets to
regional, local, and sector-specific levels including in cities.21−26

However, a lack of detailed data has prevented comprehensive
analysis of carbon intensity across existing cities, hindering the
potential to assess the factors27−30 that systematically
contribute to low carbon intensity.
Here, we present and analyze a new database of city-level

emissions in China as of 2013, the latest year for which detailed

data sources are available. The new data set contains all of the
337 cities in mainland China, including 333 prefecture-level
divisions (i.e., 286 prefecture-level cities and 47 other
prefecture-level divisions) and 4 province-level cities (Beijing,
Tianjin, Shanghai, and Chongqing). Details of methods and
data sources are available in the Methods. In summary, we first
compiled and fused data from official statistics on energy,31

industrial output,5,6 and emissions32,33 to estimate CO2

emissions from nearly 100 000 discrete sources, including
5775 electric generators, 1971 cement factories, 1355 iron- and
steel-making furnaces, 273 glass kilns, and industrial boilers at
84 603 factories. The on-road mobile emissions were estimated
using a city-level emission model.32 This emission inventory
data has an unprecedented level of details for individual

Figure 1. Processing details of the city-level inventory of Chinese CO2 emissions. Table (a) shows emission source sectors, data sources, incoming/
outgoing resolution, and emission shares. Map (b) shows the location, CO2 emissions (sizes), and industry types (colors) of all the point sources
(∼100 000) estimated in this paper.
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emitting sites and sectors compared to previous data gathered
at country scale or for very few cities.34−36 We then evaluated
the determinants of cities’ carbon intensities according to two
main variables: economic structure, or the composition and
outputs of various sectors of the city economy, and carbon
emissions per unit of output by each industry sector. At the
same time, we decomposed cities’ GDP into the share related
to capital investments (including both real estate and fixed
industrial assets like machinery but excluding any agricultural
investments) and the share related to all other production types
(usually dominated by service sectors). Finally, for each source
of emissions we assessed the date at which each emitting
equipment was built and decommissioned, geographical
locations, production capacity, combustion technology, annual
product activity, fuel type, and fuel use; these data were used to
evaluate the management- and technology-gaps in each city as
well as targeted opportunities for decreasing the cities’ carbon
intensities.

■ DATA AND METHODS
Emission Model Framework. CO2 emission inventories

are usually developed on the basis of energy balance statistics.
The concept of energy balance is a complete statistical
accounting of all energy products entering, transforming,
existing, and being used in the economy. However, using the
energy balance based method to account for city-level
emissions is not feasible in China, because the city-level energy
balance tables are very scarce. Thus, we develop a new
approach (Figure 1a) to estimate annual citywide CO2
emissions by industrial unit, sector, and subsector, and total
these using the administrative boundary of each city. Our CO2
emissions inventory includes anthropogenic sources of burning
fossil fuels and producing cement. Nearly 100 000 discrete
power and industrial units are covered in our database (Figure
1b), and 16 fuels are tracked in the emission model framework
(see Supporting Information (SI) Table S1). We estimate
activity data for these emission sources and assign source-
specific emission factors (i.e., carbon emission rate per unit fuel
use) to calculate CO2 emissions. Four primary data sets are
used to provide activity data for each infrastructure and each
source (i.e., socioeconomic statistics, MEP database, ES
database, and MEIC database, see references in SI Table S2
for details). Emission factors are calculated by the product of
fuel carbon content, calorific values, and oxidation rate.3 When
summarized to city totals, emissions related to the use of grid-
supplied electricity, heat, and steam within the city territory but
produced outside are not included in the city that consumes
these energy but included in the city where these energy are
produced. The inventory developed in this study is a territorial-
based emission inventory.37,38 We aggregate emission sources
into four source sectors of power, industry, transportation, and
residential to summarize emission estimate methods in the
following text. More details of our method are given in SI Texts
S1 and S2.
Power Sector. This source sector includes both grid-

connected facilities and industrial autoproducers (i.e., captive
power) in territory of cities. Our estimate relies on the MEP
database using the method of our previous work.33 The MEP
database contains information about the date each generating
unit came online and retired, geographical locations, generating
capacity, combustion technology, annual power generation, fuel
type, and fuel consumption. 5775 fossil-fuel generators were
running in 2013 and therefore included into our CO2 emissions

database. We scale annual fuel consumption of these generators
consistent with the total fuel use by power sector in national
statistics.31 The magnitude of scale factors are close to one (e.g.,
0.97 and 0.96 for coal and natural gas, respectively), that
indicates the facility level statistics in MEP database are well
constrained by macroeconomic data. For emission factors, we
use the data of 491 gC kg−1 coal, 838 gC kg−1 oil, and 590 gC
m−3 natural gas,3 respectively.

Industry Sector. Industry encompasses a wide range of
activities, including all facilities and equipment used for
producing, processing goods, and materials. Emissions are
produced from fossil fuel burning as well as calcination of
limestone in cement production. Three databases are
harmonized and combined through a data fusion approach to
create a unified estimate of industry emissions. We begin by
using the MEP database to compile the activity information on
carbon-intensive industries, which are composed of 1971
cement clinker production facilities, 1355 iron and steel making
furnaces, and 273 glass kilns. Next, we cross-check these data
with plant-level energy statistics from the ES database, adjust
and add basic information where necessary (e.g., fuel use,
operation time, and locations). Besides, where the ES includes
factories not in the MEP, we retain such data that our emissions
data represents an integration of all industries. Consequently,
another 84 603 factories are supplemented to the industry
database. These factories contain large numbers of small boilers
and small kilns, those accounted for 27% of burning coal in the
industry sector. Last, we use the MEIC data to fill in the
missing fuel types in MEP and ES data, because these two
databases include only coal, fuel oil, natural gas, and coke. The
other transformed fossil fuels used by industries are derived
from the MEIC data at province scale. Therefore, the industry
sector represents a mixture of data sources from both pointwise
estimates and province-level estimates. We sum all the industry
activities and scale them consistent with national statistics by
fuel and industry type.5,31 Emission factors are taken from
literatures and the MEIC database. For the provincial estimates
that are not geocoded, emissions are downscaled from province
to city using city-level GDP6 (Table S3) related to industrial
activities.

Transportation Sector. The transportation sector includes
emissions from both onroad and nonroad sources. The onroad
mobile emissions are estimated using the city-level emission
model built in our previous work,32 comprising vehicle stock
model, vehicle age distribution model, fuel economy database,39

and traffic volume database.40 City vehicle numbers are
obtained from city statistics,6 and then multiplied by age
distributions, annual vehicle miles traveled, and fuel con-
sumption per mile to calculate total fuel use specific to city/
vehicle class/vehicle age/fuel type. We adopt a vehicle miles
ratio on intercity roads to take account of intercity traffic.40

Carbon emission factors are based on the carbon content of
gasoline and diesel fuel used in China, i.e., 855 gC kg−1 and 870
gC kg−1, respectively. Emissions from nonroad sources in the
transportation sector are taken directly from the MEIC data,
which include construction, agricultural, and farming machi-
nery. The province-level emissions are allocated from province
to city using additional spatial proxies (Table S3).

Residential Sector. Residential emissions come from the
combustion of fossil fuels in residential and commercial
activities, primarily for heating and cooking. We utilize
residential urban/rural emissions from the MEIC data, where
province-level estimates are built for different fuel and

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b05654
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://dx.doi.org/10.1021/acs.est.7b05654


combustion device types. The amount of fossil fuel use is
updated to the year of 2013 using the latest statistics data.31

Spatial downscaling of residential emissions are performed
through use of population densities41 specific to urban/rural
extent42 for each city.
Uncertainty Analysis. Monte Carlo uncertainty analysis is

performed by estimating the 95% confidence interval of the
CO2 emissions for each city. We collect uncertainty information
on activity data, emission factors, and other estimation
parameters for each component part, and aggregate the
component uncertainties to the total estimate of city
emissions.37,43,44

The uncertainty analysis is conducted by source sector. For
power and industry sectors, we estimate the uncertainties of
emissions for each industrial unit. The activity rates are
assumed to follow a normally distributed pattern with
coefficient of variations (CV) ranging from 10% to 20%
according to data sources and industry types. For onroad
transportation, the emission uncertainties are estimated at the
city level. The fuel use of each city is assumed to follow a
normally distributed pattern, with a CV of 15% for passenger
vehicles and of 30% for trucks. The CV for trucks is higher
because such vehicles are more used for intercity transport that
could involve larger uncertainties in city emissions estimate. For
the other emission sources, they all come from the MEIC
database, which calculates the province’s emission totals and
distributes to each city using proxies. Considering the spatial
allocation method may not accurately reflect the true value, we
assume that the city emissions derived from MEIC have a
uniform distribution within a range of ±30% to ±50% to reflect

the large uncertainties. For all the emission sources, the CO2
emission factors follow a normal distribution with the CV of
10% for coal and of 5% for oil and natural gas. All the
parameters mentioned above with their probability distribu-
tions are placed in a Monte Carlo framework, and 100 000 trials
are performed to estimate the 95% confidence interval of city
CO2 emissions.

■ RESULTS

China’s average carbon intensity in 2013 was 0.84 kgCO2/
$GDP. However, among the 337 Chinese cities we analyzed,
the variability in carbon intensities in the same year followed a
log-normal distribution that spanned nearly 2 orders of
magnitude: from 0.09 to 7.86 kgCO2/$ (a 25% coefficient of
variation). The cities with the highest carbon intensities tend to
have low per capita income levels (SI Figures S1−S3), and are
often located in central and western provinces (Figure 2a and
b). The cities with carbon intensities greater than the median
(0.93 kgCO2/$) account for 57% of the country’s CO2
emissions but only 28% of the country’s GDP (Figure 2c),
with per capita incomes that are 14% lower than the national
average.
In 2013, 64% of China’s GDP was tied to capital investments

that consist of investing in real estate and in industries. Across
cities in the same year, however, this investment share was as
low as 18% and as high as 89%, with greater shares in cities with
higher carbon intensities (Figure 3a and b; SI Figure S4). The
greater a city’s carbon intensity, the lower the share related to
real estate (hashed blue areas in Figure 3a and b; SI Figure S4),
and the higher the share related to industrial capitals tends to

Figure 2. Overview of economy and carbon emissions in China cities. Map (a) shows the location, carbon intensity (sizes), and income per capita
(colors) of 337 cities in 2013. The curve (pink) in b shows the average income per capita with different carbon intensities, and bars in b show
corresponding shares of income per capita (colors) of cities. Curves in c indicate probability density functions of city numbers (yellow), emissions
(green), and GDP (purple).
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be (solid blue areas in Figure 3a and b; SI Figure S4). In cities
with low carbon intensities (e.g., < 0.32 kgCO2/$), real estate
accounted for ∼20% of GDP, and industrial capital and other
(service) GDP contributed roughly 40% each (Figure 3b). By
contrast, for carbon-intensive cities, real estate investments
accounted for only ∼10% while investments flowing to
industrial capital represented 65−80% of GDP (Figure 3b).
In turn, these structural differences in cities’ economic

structure generally translate in differences in the sources of CO2
emissions. In total, 46% of cities’ emissions are produced by
industrial activities, 37% by power generation in cities’ territory,
10% by transportation, and 7% by the residential sector in our
estimates. Figure 3c and d (as well as SI Figure S5) show that in
carbon-intensive cities, the industry and power sectors
comprise a larger portion of emissions than the national
average: 85−90% of all emissions. Conversely, the share of
industry and power emissions drops to 60% in low-carbon
cities, but transportation and residential emission shares rise to
30% and 10%, respectively, reflecting the central role of service
economy in those cities (Figure 3c and d; SI Figure S5).
In addition to the structural roots of cities’ carbon intensities

differences, our analysis found systematic differences in the
technologies used by various industries in different cities. Figure
4 shows that there is an increase in the ratio of emissions per
physical unit of products (expressed as a ratio to the national
average) as a function of cities’ carbon intensity. The
relationship is evident in almost all of the industries we
assessed: power, cement, iron, and glass, as well as for industrial
boilers operating in many different industries (Figure 4). More
detailed, facility-level analysis reveals relationships among

combustion technology, fuel type, production capacity, and
year of construction, but also a surprising range of intensities
across cities and sectors that share similar technological
characteristics (Figure 4; SI Figures S6 and S7). This suggests
that suboptimal operations management (i.e., operations worse
than the original design performance due to a low level of
maintenance management abilities) also plays a role in making
higher carbon intensities through more emissions per physical
unit of products.
Analyzing the distribution of emissions by source and class of

technology, we identify facilities whose carbon intensities
(defined as emissions per physical unit of products) exceed the
average of facilities that burn the same fuel, use the same
technology, and have similar operating capacity. We defined
classes of “super-emitting” facilities according to how much
their carbon intensity exceeds the average of similar facilities: by
more than 2σ, by more than 1σ but less than 2σ, and above
average but <1σ. Figure 5a shows the relative age of
superemitting facilities as related to cities’ carbon intensity:
across the different sectors, most superemitting facilities were
found in cities with greater carbon-intensities, and there were
few superemitting units in cities with the lowest carbon
intensities. Perhaps surprisingly, the highest-emitting facilities
are not necessarily older than facilities with mean emissions,
probably because there are simply not many facilities in China
that have been operating more than 20 years (Figure 5a; red
shading in Figure 6a).
Figure 5b and c show the magnitude of the reductions in

carbon intensity and absolute emissions, respectively, that could
be achieved if the superemitting facilities with emissions more

Figure 3. Decomposition of city GDP and emissions. (a) Decomposition of city GDP into capital investment (light blue) and others (gray). The
data for each city come from statistical yearbook.6 (b) Percentages of capital investments in GDP by city carbon intensity classes. (c) Breakdown of
carbon emissions by sectors of industry (red), power (orange), residential (yellow), and transportation (green). (d) Percentages of emissions from
different sectors by city carbon intensity. Each bar represents a value range of carbon intensities that spans between 10x and 10x+0.2, where x refers to
−1, −0.8, −0.6, −0.4, ..., and 0.8. It is the same for Figures 4−6.
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than 2σ greater than the mean were targeted for improvement
and their carbon intensities brought down to the average of
similar facilities. In more carbon-intensive cities hosting
superemitting sites, intensities would decline roughly twice as
much as in less carbon-intensive cities, by 4−5% (Figure 5b).
Moreover, the emissions avoided by targeting these super-
emitters would total 0.34 Gt CO2 across China (3.7% of the
country’s emissions, see Figure 5c). If the carbon intensity of all
“super-emitting” facilities were brought down to the current
average (Figure 5b), then the cities with the greatest carbon
intensities would see those intensities decline by 8−10%, and
China’s emissions would fall by 0.67 Gt CO2 (7.3%, see Figure
5c). Yet because the variance in cities carbon intensities is
primarily related to economic structure, targeting these
superemitting facilities would not substantially narrow the
disparity in the carbon intensities across cities. More
discussions on possible changes in future are presented in SI
Text S3.

■ DISCUSSION
Uncertainty and Validation. The uncertainty of city CO2

emissions is estimated at the range of −3.7−3.5% to −35.8−
34.5% depending on emission conditions (SI Figure S8). The
overall uncertainties are significantly smaller than the variability

of 2 orders of magnitude among city carbon intensities. The
cities with larger percent of power and industry emissions tend
to have lower uncertainties, and carbon intensities of these
cities are usually much higher. For example, the cities where
75% emissions come from power and industry sectors tend to
have an uncertainty range of ±5% to ±10%. They account for
83% of the country’s CO2 emissions but only 70% of the
country’s GDP. The results suggest that our city emissions
database has a good estimate on carbon intensive cities, and the
accuracy of our data is mainly attributed to pointwise estimates
of power and industrial emissions, which contribute 81% of
China’s CO2 emissions in 2013.
We also search from statistical yearbooks of the 337 city

governments and retrieve complete energy balance tables for 20
cities. The city-level energy balance represents energy products
and their flow occurring physically within the territory of cities.
These statistics of city-level energy balance are independent
with the data used in our inventory, thus are appropriate to
evaluate our city emissions estimates. Energy consumption of
the 20 cities account for 5.7% of national totals in 2013. We
recalculate CO2 emissions for these 20 cities using the energy
balance data and the same emission factors as used in our
inventory. The results suggest that the amount of CO2
emissions are broadly consistent with our estimates (SI Figure
S9 and Table S5). The consistency of emissions estimates lends
confidence to the city-level emissions database developed in
this paper. We also compare our results with emissions
estimates by Cai et al.,45 who calculates CO2 emissions from
288 cities in China for the year of 2012. The comparison results
(SI Figure S10) show that these two data sets are broadly
consistent (Pearson’s r is 0.89) although they are compiled for
different years (2013 and 2012) using different methods.

Policy Implication. Capital investment has been a key
driver of fast economic growth in China over the last 20 years,
and investment has frequently been used as a policy tool to
maintain growth. For example, at the end of 2008, a 4 trillion
Yuan (∼US$ 570 billion) economic stimulus program was
launched to boost the economy after the global financial crisis.
These funds were primarily invested in infrastructure, spurring
iron, and cement industries as well as growth in the
(predominantly coal-based) power sector. Although these
industries succeeded in maintaining China’s economic growth
during the crisis, they also effectively locked-in the energy- and
carbon-intensive economic structure in many cities, and
resulted in the large disparities in carbon intensities we observe
across Chinese cities. Now, as economic growth has slowed and
the government tries to transition from investment-led growth
to consumption-led growth (discussed in SI Text S4), progress
is hampered in some regions by the locked-in capital. Figure 6
illustrates the nature of the challenge: in cities with the greatest
carbon intensities, 60−70% of power and industrial emissions
in 2013 were produced by infrastructure that is less than 10
years old (blue and purple shading in Figure 6b). Given that
service lifetimes of such infrastructure are commonly 30−40
years, these young facilities represent a dilemma: either fail to
achieve emissions reduction goals or suffer economic losses
related to their early retirement. This lock-in dilemma is further
exacerbated by the fact that, China’s most carbon-intensive
cities also tend to be its poorest (Figure 2; SI Figures S2 and
S3), such that it presents challenges not only for China’s
climate goals but also for efforts to reduce income inequality.46

Our findings suggest that the emissions reductions necessary
for China to meet its 2030 climate targets will not be

Figure 4. Carbon emissions per physical unit of products. The
industrial products are estimated based on electricity and heat
generation for power (a), on clinker production for cement (b), on
pig iron production for iron blast furnace (c), on flat glass production
for glass (d), and on energy output for industrial boilers (e). The
carbon emissions per unit output (y-axis) is normalized by national
mean. Each column with 95% confidence interval error bar represents
the mean of a group of facilitates (the numbers are listed in SI Table
S4) located in cities within a specific range of carbon intensities. Error
bars are not shown if the number of industrial units is less than 5.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b05654
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05654/suppl_file/es7b05654_si_001.pdf
http://dx.doi.org/10.1021/acs.est.7b05654


distributed uniformly across cities. Extreme inequalities in
emissions intensities and per capita incomes will require

mitigation strategies tailored to each city’s economic structure
and infrastructure. The industrial cities may make cost-effective
cuts in total emissions targeting supper emitters (SI Table S6),
which only need to improve maintenance management abilities
and operate close to their original design performance. It is a
suitable policy instrument given the industrial cities are
relatively “poor” regions. Gradually tightening carbon intensity
targets can help remove supper-emitting facilities, and balance
climate goals and economy in these “Industrial” oriented cities.
The “Service” oriented cities have low carbon intensities and
high income per capita due to low CI activities in the service
economy. Compared with industrial intensive cities, the
“Service” oriented cities can reduce their carbon intensities
easily with a service sector surge even without a reduction in
absolute emissions. Therefore, absolute caps rather than
intensity targets should be used to maximize emissions
reductions in “Service” oriented cities. Progressive emissions
caps may be feasible to achieve incremental improvements.
Carbon trading may be a cost-effective policy instrument47,48

to link cities with different climate targets and opportunities for
emissions reductions, as they could provide economic
incentives for city-to-city transfer and deployment of low-
carbon technologies, benefiting efficiency improvement and
accelerating economic restructuring.49 Compared to command
and control policies, the market-based instruments create
financial incentives for polluters to emit less until it is cheaper
to buy emissions allowances on a market than to cut emissions
further. Consequently the emitters that can mitigate emissions
in cheapest ways will reduce the most. The super-emitting
facilities have the potential to cost-effectively improve the
overall performance by means of upgrade and retrofit, which
will help reduce emission intensities in carbon-intensive cities.
These are examples of policies that might address the large

Figure 5. Potential reduction of carbon emissions through technology-driven efficiency gains. (a) Distribution of number of superemitting facilities
by source type and unit age as a function of carbon intensity of the cities where each facility is located. The superemitters are defined as those with
carbon emissions per physical unit of products greater than 2σ (right), 1σ (middle), or the mean (left). (b) Curves show the estimated reduction
ratio of carbon intensity that could be achieved if the superemitting units of industry and power sources were updated with efficiency improvements
to be brought to the sector mean. (c) Carbon emissions that could be avoided if the superemitters were replaced or improved as discussed above.

Figure 6. Age structure of power and industrial emissions. (a)
Breakdown of carbon emissions by five age groups, with the youngest
units located at the bottom and oldest ones at the top. (b) Percentages
of emissions from each age group by city carbon intensity.
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disparity in carbon intensity among China’s cities. It is clear,
however, that the huge differences in cities’ carbon intensity
revealed by our study will demand careful policies to ensure
that China meets its economic and climate goals.
Future Work. The method developed in this study can be

used to monitor city CO2 emissions over time, which is crucial
to assess compliance with carbon intensity targets. Tracking city
changes at the level of individual facilities and economic sectors
extends our ability to accurately understand emission trends
and their drivers, especially in rapidly emerging cities. This is a
potentially useful way to track the effectiveness of mitigation
policy and to verify that cities make their promised carbon
intensity cuts, which lay a foundation for the cap-and-trade
program. To achieve this goal, considerable improvements are
needed in getting reliable sources of facility level data that have
improved resolution and near real-time updates. At the same
time, when massive amounts of data are becoming more
accessible, the emission accounting method will see further
improvement in particular the following three aspects.
The city emissions estimated in this study refer to territorial-

based emissions. If we take the emissions embodied in trade
into account, or use consumption-based estimates, then China
carbon emissions will be redistributed over cities. The cities
that import electricity and industrial products lead to higher
estimates of carbon emissions, whereas the opposite is true for
exporting cities. Given that cities with low carbon intensities in
territorial-based estimates are mostly likely the import market,
the disparity in carbon intensities across cities shown in this
study will be narrowed if consumption-based emissions are
used. But even so, the importing cities still tend to have lower
carbon intensities, because they produce final products and
services that capture most of the value of goods traded.
Furthermore, the policy implication inferred by consumption-
based emissions might show that targeting supper-emitting
facilities in carbon intensive cities will have cobenefits for
reducing carbon intensities in importing cities. At the current
stage the available data do not allow quantitative analysis until
supply chains of products can be tracked between cities.
The emissions of methane (CH4), the second most

important greenhouse gas after CO2, are not considered in
our study, because the data we relied on are not available to
count CH4 emissions. Anthropogenic sources of CH4 contain
mainly leakage from the natural gas system, rice cultivation, and
the raising of livestock, which are quite different from the
combustion sources of CO2. Therefore, the cities within the
natural gas supply chain are expected to create CH4 emissions
from natural gas production and use, and the cities that have
large agricultural output also lead to CH4 emissions. Carbon
intensities of these cities are underestimated in this study due to
the omission of CH4 accounting, which highlights the need for
city level CH4 emissions inventories in future.
The emissions reduction policies analyzed in this study

mainly focus on superemitting facilities. It represents a short-
time measure that can cost-effectively improve the overall
performance by means of upgrade and retrofit with a balance
between climate goals and the economy. Urban form planning
introduces long-term measures16,17 that structure city carbon
emissions on long time scales, differing from short-term
measures like removing superemitters. The relationship
between urban form and CO2 emissions can be built using
our new database for Chinese cities. The analysis results can
support policy recommendations with both short- and long-
term measures to mitigate climate change. Quantification

analysis of how these policies affect China’s emissions, which
involve extra work on emission projections and scenario
analysis, will help in understanding how to achieve China’s
climate targets in the future.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.est.7b05654.

Details of emissions estimation method (Text S1) and
key assumptions (Text S2); possible changes of city
carbon intensities in future (Text S3); investment- and
consumption-led growth (Text S4); statistical relation-
ships between city carbon intensity and different
variables (Figures S1−S5); carbon emissions per unit
output for power (Figure S6) and industry sectors
(Figure S7); uncertainty analysis of city CO2 emissions
(Figure S8); validation of city CO2 emissions (Figures
S9−S10; Table S5); details of city emission model
(Table S1−S3); number of industrial facilities for each
bar in Figure 4 (Table S4); and emissions reductions due
to super emitter policies (Table S6) (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: qiangzhang@tsinghua.edu.cn (Q.Z.).
ORCID
Bo Zheng: 0000-0001-8344-3445
Present Address
#Laboratoire des Sciences du Climat et de l’Environnement,
CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Key R&D program
(2016YFC0201506), the National Natural Science Foundation
of China (91744310 and 41625020), and the China’s National
Basic Research Program (2014CB441301). Q.Z. and K.H. are
supported by the Collaborative Innovation Center for Regional
Environmental Quality.

■ REFERENCES
(1) Gregg, J. S.; Andres, R. J.; Marland, G. China: Emissions pattern
of the world leader in CO2 emissions from fossil fuel consumption and
cement production. Geophys. Res. Lett. 2008, 35 (8), L08806.
(2) Guan, D.; Peters, G. P.; Weber, C. L.; Hubacek, K. Journey to
world top emitter: An analysis of the driving forces of China’s recent
CO2 emissions surge. Geophys. Res. Lett. 2009, 36 (4), L04709.
(3) Liu, Z.; Guan, D.; Wei, W.; Davis, S. J.; Ciais, P.; Bai, J.; Peng, S.;
Zhang, Q.; Hubacek, K.; Marland, G.; Andres, R. J.; Crawford-Brown,
D.; Lin, J.; Zhao, H.; Hong, C.; Boden, T. A.; Feng, K.; Peters, G. P.;
Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, N.; He, K. Reduced carbon
emission estimates from fossil fuel combustion and cement production
in China. Nature 2015, 524 (7565), 335−338.
(4) Raupach, M. R.; Marland, G.; Ciais, P.; Le Queŕe,́ C.; Canadell, J.
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