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Abstract. This study is the first in a series of papers that
aim to develop high-resolution emission databases for dif-
ferent anthropogenic sources in China. Here we focus on
on-road transportation. Because of the increasing impact of
on-road transportation on regional air quality, developing an
accurate and high-resolution vehicle emission inventory is
important for both the research community and air quality
management. This work proposes a new inventory method-
ology to improve the spatial and temporal accuracy and res-
olution of vehicle emissions in China. We calculate, for the
first time, the monthly vehicle emissions for 2008 in 2364
counties (an administrative unit one level lower than city)
by developing a set of approaches to estimate vehicle stock
and monthly emission factors at county-level, and technol-
ogy distribution at provincial level. We then introduce allo-
cation weights for the vehicle kilometers traveled to assign
the county-level emissions onto 0.05◦

× 0.05◦ grids based
on the China Digital Road-network Map (CDRM). The new
methodology overcomes the common shortcomings of previ-
ous inventory methods, including neglecting the geographi-
cal differences between key parameters and using surrogates
that are weakly related to vehicle activities to allocate vehicle
emissions. The new method has great advantages over previ-
ous methods in depicting the spatial distribution characteris-
tics of vehicle activities and emissions. This work provides a
better understanding of the spatial representation of vehicle
emissions in China and can benefit both air quality modeling
and management with improved spatial accuracy.

1 Introduction

Quantifying the magnitude and trend of anthropogenic air
pollutants and greenhouse gas (GHG) emissions from China
is of great importance because of their negative impact on the
environment and their significant contribution to global emis-
sion budgets. The community has put tremendous effort into
quantifying anthropogenic emissions in China through the
development of bottom-up emission inventories (e.g., Streets
et al., 2003; Ohara et al., 2007; Zhang et al., 2009). However,
the spatial and temporal resolution in existing bottom-up in-
ventories is still very low due to the limitation of emission
models and lack of input data (Zhang et al., 2009). This has
been recognized as the bottleneck limiting the performance
of chemical transport models and the development of emis-
sion control strategies. There is an urgent need to develop
high spatial and temporal emission profiles with improved
accuracy through new emission models and data. This study,
the first in a series that will develop high-resolution emission
databases for different anthropogenic sources in China, will
address emissions from on-road transportation.

On-road transportation contributes significantly to air pol-
lutant emissions in China because of the substantial vehi-
cle growth during the past three decades. It is estimated
that vehicles contributed 24, 29 and 20 % to national nitro-
gen oxides (NOx), non-methane volatile organic compound
(NMVOC) and carbon monoxide (CO) emissions, respec-
tively, in China in 2006, with higher contributions in urban
areas (e.g., 40, 41, and 52 %, respectively, in Beijing) (Zhang
et al., 2009). Given the significant impact of vehicles to total
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emissions in China, it is of great importance to estimate vehi-
cle emissions accurately at a high spatial and temporal reso-
lution for both atmospheric chemistry research and air qual-
ity management.

Vehicle emissions are difficult to quantify and locate spa-
tially, because they are mobile and affected by many influ-
encing factors, such as vehicle stock, vehicle technology dis-
tribution (the shares of different technologies in the fleet),
emission factors, and activity levels. Previous studies have
developed numerous vehicle emission inventory methods at
various resolutions, which can be classified into two broad
categories. One method estimates vehicle emissions by road
segment on the basis of link-based activity data (Niemeier
et al., 2004; Huo et al., 2009; Wang et al., 2009), which
has been applied to a few cities in China (Huo et al., 2009;
Wang et al., 2009). However, this method is extremely data-
intensive and thus difficult to extrapolate to most Chinese
cities because of the limited data availability.

The other method estimates emissions at provincial level
and allocates total emissions to counties or grids based on
surrogates, such as Gross domestic product (GDP) (Cai and
Xie, 2007), population density (Wei et al., 2008), or road den-
sity (Streets et al., 2003; Ohara et al., 2007; Zhang et al.,
2009), by assuming a linear relationship between the sur-
rogates and vehicle emissions of counties or grids within a
province. However, these studies often apply national aver-
ages for key parameters (such as, technology distributions
and vehicle emission factors) to estimate provincial emis-
sions, which can introduce significant errors in the spa-
tial distribution of emissions. Furthermore, many surrogates,
such as GDP and population density, are not directly related
to vehicle activity. While road density is directly related, it
cannot reflect the variation of traffic flow between different
roads and, therefore, this allocation method has been consid-
ered to have significant uncertainties at city level (Tuia et al.,
2007; Ossés de Eicker et al., 2008; Saide et al., 2009). Some
studies have improved on this method by using an aggregated
surrogate that combines population density, road density and
traffic flow (Saide et al., 2009; Zheng et al., 2009). How-
ever, this method can only be applied for a few provinces
with good data availability because data, such as traffic flow
road by road, are not available for the whole of China. There-
fore, previous inventory methods are applicable either for a
few specific cities, or for provinces and the country but with
significant uncertainties resulting from the exclusion of ge-
ographical differences in key parameters and the choice of
spatial surrogates that are weakly related to vehicle activ-
ity. Consequently, existing methods are not able to establish
an accurate, high-resolution vehicle emission inventory for
China.

There are two important objectives to improve the ac-
curacy and resolution of the vehicle emission inventory of
China: (1) to increase the spatial resolution of the key in-
fluencing factors of emissions and (2) to develop a gridding

method in which the surrogates are strongly related to vehicle
activity.

With these two aims in mind, this work developed a new
methodology of high-resolution vehicle emission inventory
for China. We first developed a county-level vehicle emis-
sion inventory that covered 2364 counties in China (county
is an administrative unit one level lower than city). To calcu-
late the emissions from vehicles registered in each county, we
simulated county-level vehicle stock, province-level technol-
ogy distribution and county-level emission factors that took
into account the geographic differences in local meteorolog-
ical factors (e.g., temperature and humidity). We then allo-
cated the county-level vehicle emissions onto 0.05◦

× 0.05◦

grids based on the electronic road map of China compiled in
2010, which is the only available data close to 2008. In this
step, the total vehicle kilometers traveled (VKT) of each ve-
hicle type in a county was allocated to roads according to the
road type. Because the new method differentiated the traffic
load on different types of roads, it had advantages over pre-
vious allocation methods in depicting the spatial distribution
of vehicle activities.

This study focused on CO, non-methane hydrocarbon
(NMHC), NOx and particulate matters with diameter less
than 2.5 µm (PM2.5) emissions generated from running, start-
ing and evaporative processes of passenger vehicles and
trucks in China in 2008. The article is organized as follows:
in Sect. 2 we describe the methods to determine the county-
level parameters for calculating county-level vehicle emis-
sions and to allocate the emissions onto grids; in Sect. 3 we
analyze the results of key parameters, county-level vehicle
emissions and gridded emissions; in Sect. 4 we evaluate the
new allocation method by comparing with previous methods
and by conducting sensitivity analyses for key assumptions;
finally, in Sect. 5 we discuss the main uncertainties of the
inventory method and the next step of future work.

2 Methodology and data

2.1 General methodology description

To develop a high-resolution vehicle emission inventory for
China, we estimated vehicle emissions at county-level by ex-
ploring the geographic differences in the key parameters as
fully as possible, and allocated the county-level emissions
onto 0.05◦ × 0.05◦ grids with a new allocation method which
could better reflect the spatial distribution characteristics of
vehicle activities.

For a given county, emissions from vehicles registered in
that county were calculated as follows:

EMISk =

∑
i

∑
j

(VPi × Xi,j × VKT i × EFi,j,k), (1)

where i represents vehicle types, including four types of
passenger vehicles: heavy-duty buses (HDBs), medium-
duty buses (MDBs), light-duty buses (LDBs) and minibuses
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(MBs); and four types of trucks: heavy-duty trucks (HDTs),
medium-duty trucks (MDTs), light-duty trucks (LDTs) and
mini trucks (MTs); j represents the control technologies
(corresponding to pre-Euro I, Euro I, Euro II, Euro III and
Euro IV standards);k represents pollutant type (CO, NMHC,
NOx and PM2.5 in this work); EMISk is the vehicle emis-
sions of pollutantk (Mg); VPi is the vehicle population (mil-
lion); Xi,j is the share of vehicles with control technology
j in the vehicle typei; VKT i is the average vehicle mileage
traveled of vehicle typei (km year−1) and EFi,j,k is the emis-
sion factor of pollutantk of vehicle typei with control tech-
nologyj (g km−1). The research included all counties of the
31 provinces in China, except for Hong Kong, Macau and
Taiwan. Motorcycles were excluded from this work because
the method of refining spatial resolution of activities from
province to county is not applicable to motorcycles given the
fact that the growth pattern of motorcycle stock does not fol-
low the GDP-related Gompertz function (Wang et al., 2006).

As Eq. (1) shows, to establish an accurate vehicle emis-
sion inventory at county level, it was important to understand
the differences in major parameters between counties. By ex-
tensive application of available statistical data and existing
model tools, we improved the spatial resolution and accuracy
of three critical parameters: vehicle population, technology
distributions and emission factors.

Different approaches were developed for these parameters:
(1) county-level vehicle population was estimated by city-
level Gompertz functions, which were adjusted by county-
level socio-economic status; (2) province-level technology
distribution was calculated by provincial vehicle stock and
survival functions and (3) monthly county-level emission
factors were simulated by the international vehicle emission
(IVE) model using China’s on-road vehicle emission cor-
rections and county-level meteorological corrections. Sec-
tions 2.2–2.4 present the three approaches in detail.

Inter-county traffic also impacts the real-world spatial pat-
terns of vehicle emissions. In this work, we allocated the
emissions calculated by Eq. (1) to different road types (high-
ways, national, provincial, and county roads, as defined in
Table 1) on the basis of VKT weighting factors consider-
ing the effect of inter-county traffic. We then mapped the
emissions onto 0.05◦ × 0.05◦ grids according to road densi-
ties (for hot-stabilized emissions) and urban populations (for
start and evaporation emissions). Details of the emission al-
location approach are provided in Sect. 2.5.

2.2 Modeling vehicle population at county level

In China, the administrative tiers from high to low are
province, city and county, and statistics are not available for
county-level vehicle populations. In this work, we developed
a model approach to estimate total vehicle population in each
county by linking total vehicle ownership (vehicle/1000 peo-
ple) with its economic development. Vehicle population by

Table 1.Vehicle kilometers traveled allocation weights.

Highwaysa National Provincial County
roadsb roadsc roadsd

HDTs 52 % 29 % 11 % 8 %
MDTs 17 % 52 % 18 % 13 %
LDTs and MTs 21 % 30 % 24 % 25 %
HDBs, MDBs, 20 % on highways, national

80 %
LDBs and MBs roads and provincial roads

a The China Digital Road-network Map (CDRM), which was applied in this study,
classified roads into four types: highways, national roads, provincial roads and county
roads.
b National roads are defined as main roads connecting provincial capitals, economically
developed cities and traffic hub cities. The CDRM data separated a proportion of roads
from national roads and categorized them as “Highways”.
c Provincial roads are defined as main roads connecting cities within a province. The
provincial government is responsible for the construction, maintenance and management
of provincial roads. The CDRM data separated a proportion of roads from provincial
roads, and categorized them as “Highways”.
d County roads are defined as roads used mainly for transportation within a city. The
municipal government is responsible for the construction, maintenance and management
of these roads.

type was then split from total vehicle population using the
share of vehicle type at provincial level.

The vehicle growth of a region is highly correlated to its
economic development (e.g., per-capita GDP), and the Gom-
pertz function (an S-shaped curve with three phases of slow,
fast and, finally, saturated growth) is often used to establish
the relationship between per-capita GDP and total vehicle
ownership (Dargay and Gately, 1999; Dargay et al., 2007;
Huo and Wang, 2012). In this study, we used the Gompertz
function to hindcast total vehicle ownership at county level
using historical GDP data:

Gompertz Function: V = V ∗
× eαeβE

, (2)

whereV represents total vehicle ownership (vehicles/1000
people);V ∗ represents the saturation level of total vehicle
ownership (vehicles/1000 people);E represents an economic
factor (here, per-capita GDP); andα andβ are two negative
parameters that determine the shape of the curve.

According to Eq. (2), three key parameters must be deter-
mined to estimate the total vehicle population of a county:
(1) the saturation level (V ∗), assumed to be 500 vehicles per
1000 people for all counties in this study, which is a mod-
erate vehicle growth scenario for China (Wang et al., 2006);
(2) per-capita GDP (E) of the county, which is obtained from
China Statistical Yearbook for Regional Economy (National
Bureau of Statistics, 2002–2011) and (3) parametersα andβ

of the county, which are determined by theα andβ values
of the city that this county belongs to and a county-specific
adjustment factor, as described below.

α andβ values can be derived from historical GDP data
and vehicle ownership according to the Gompertz function.
We first use Eq. (3) (converted from Eq. 2) to deriveα and
β for each city where both GDP and vehicle ownership data
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are available.

ln(− ln

(
Vi

V ∗

)
) = ln(−αi) + βiEi, (3)

wherei represents the city that the county belongs to. City-
level per-capita GDP (Ei) and vehicle ownership data (Vi)

were available from 2001 to 2010 from China Statistical
Yearbook for Regional Economy (National Bureau of Statis-
tics, 2002–2011).

As shown by Eq. (3), ln(−α) andβ were linearly related,
and could be regressed from the 10 pairs (data from 2001
to 2010) of known ln(−ln(Vi /V ∗)) andEi . According to the
regression results, the mean value ofR square (R2) of the
linear regression for all the cities was 0.92 and the median
value was 0.96, indicating that the Gompertz function was
reliable for simulating city-level vehicle growth patterns in
China. A few cities (e.g., Qiqihar and Jiamusi) showed a poor
R2 (< 0.5). For these cities, as well as those in Tibet, Qinghai
and Xinjiang where the statistics are largely incomplete, we
used their provincialα andβ regression parameters instead.
In total provincial regression parameters were used for 14 %
of the cities.

β represents the growth rate of vehicle ownership driven
by GDP per-capita. Cities with more GDP per-capita tend to
have lower vehicle growth rates (and smallerβ value) than
those cities with less GDP per-capita. Figure 1 illustrated
the inverse relationship betweenβ and GDP per-capita. Fig-
ure 1a compares theβ values of Hebei and its three cities.
As shown in the figure, the three cities had differentβ values
from the provincial one. Of the three cities, the richer city has
a lower vehicle growth rate because the Gompertz function
is S-shaped and the vehicle growth rate slowed down close to
the saturation level. Figure 1b further shows that theβ values
of the Hebei province and all its cities had a strong inverse
correlation with their per-capita GDP in 2008.

When applyingβ derived from each city to counties, it
needs to be adjusted as the GDP per-capita in each county
varies from the city they belong to. The adjustment factork

is derived as follows:

ki,j =


Ei,min
Ej

(Ej ≤ Ei,min)

1 (Ei,min ≤ Ej ≤ Ei,max)
Ei,max

Ej
(Ej ≥ Ei,max)

, (4)

wherei represents city;j represents county that belong to the
city andEj is the per-capita GDP of countyj in 2008.Ei,min
andEi,max are the minimum and maximum per-capita GDP
during 2001–2010, respectively, used to regress the city-level
Gompertz function. If the per-capita GDP of county is in the
linearity range of the city Gompertz function (betweenEi,min
andEi,max), we assume theβ of the county is the same as the
value of its city. If the per-capita GDP of a county was out of
the range ofEi,min andEi,max, the adjustment factor was cal-
culated as the ratio of the minimum or maximum per-capita
GDP of the Gompertz curve to the county per-capita GDP.

Figure 1. Gompertz regression of the Hebei Province and its cities:
(a) Gompertz function fitting of Hebei versus three selected cities
within it (Cangzhou, Tangshan and Hengshui);(b) The relationship
betweenβ values and per-cap GDP in 2008 of the Hebei province
and all its cities.

We assumed the sameα for all counties in the same city.
The county-levelα andβ could be calculated from Eqs. (5)
and (6).

αj = αi (5)

βj = ki,jβi (6)

After estimating county-level vehicle ownership using
Eq. (2), total vehicle population for each county was calcu-
lated by multiplying the total vehicle ownership and popu-
lation (National Bureau of Statistics, 2009a). The county to-
tal vehicle population was further broken down into different
vehicle types (HDBs, MDBs, etc.) using the shares of each
vehicle type at provincial level (National Bureau of Statistics,
2009b), implying an assumption that the share of vehicle type
is the same for county level and provincial level.

2.3 Modeling technology distributions

In this study, the vehicle technology distributions were de-
rived from the age distribution of the fleet and the imple-
mentation year of each stage of emission standard, based on
the assumption that vehicles registered in a given year com-
ply with the up-to-date emission standards. Because the pa-
rameters necessary for the calculation were available only
at the provincial level, we simulated province-level vehicle
technology distributions and assumed that all counties in one
province had the same vehicle technology distribution.

The age distribution of the fleet in 2008 was calculated for
each province, as follows:

Ai,j = Ri × Si,j−i, (7)

whereAi,j represents the number of model yeari vehicles
that survived in target yearj (j is 2008);Ri represents the
number of newly registered vehicles in yeari (model yeari
vehicles),i = 1994–2008 andSi,j−i represents the survival
rate of model yeari vehicles at age (j − i).
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We obtained data for province-level newly registered vehi-
cles (Ri) from 2002 to 2008 from the China Statistical Year-
book (National Bureau of Statistics, 2003–2009). For the pe-
riod of 1994–2001, where many statistics were missing, we
used a back-calculation method to get newly registered vehi-
cle data for each province, as shown in Eq. (8). This method
has been applied previously to calculate future projections of
the vehicle population of China at the national level (Wang
et al., 2006).

j∑
i=1994

Ri × Si,j−i = Pj (j = 1994,1995, . . . ,2008), (8)

wherei represents model year;j represents target year;Ri

is the number of newly registered vehicles in yeari; Pj is
the province-level vehicle population in yearj , which were
available from China Statistical Yearbook (National Bureau
of Statistics, 1995–2009) andSi,j−i is the survival rates of
model yeari vehicles at age (j − i), which were calculated
separately for passenger vehicles and trucks using the fol-
lowing function:

Si,j−i = exp

[
−

(
(j − i) + b

T

)b
]

, (9)

whereT is associated with vehicle life andb is associated
with survival curve decline rate. National averageT andb of
different vehicle types were first derived based on our previ-
ous estimate (Huo and Wang, 2012) as the default for each
province. We then use successive approximation approach to
adjustT andb for each province to match the registered vehi-
cles numbers calculated by Eq. (9) with the numbers derived
from Eq. (8).T andb values of each province are presented
in Table S1 of supplementary information. Note that survival
rates were also used in Eq. (7) to calculate the age distribu-
tion of the fleet.

2.4 Modeling emission factors at county level

Vehicle emissions are influenced by many factors, includ-
ing technology, fuels, local meteorological conditions and lo-
cal driving patterns. In the vehicle emission models that are
applied worldwide (e.g., the MOBILE model in the United
States and the COPERT model in Europe), vehicle emissions
are usually estimated using base emission factors measured
in a standard environment, and applying correction param-
eters that can reflect the impact of these influencing fac-
tors. In this study, we applied the same method to estimate
county-level emission factors in China, by coupling the IVE
model developed by the International Sustainable Systems
Research Center (Davis et al., 2005), local meteorological
correction factors and correction factors based on on-road
measurement, as shown in Eq. (10):

EFi,j,k,m = EFIVE
j,k,m × ηi,j,k × ϕj,k

= (BEFIVE
j,k,m × Kj,k) × ηi,j,k × ϕj,k ,

(10)

where i represents the county;j represents the pollutant
(CO, NMHC, NOx and PM2.5); k represents the vehicle type
(e.g., HDBs, MDBs etc.);m represents the IVE vehicle cate-
gories, which are categorized by fuels (gasoline and diesel),
emission control technologies (e.g., Euro I, and Euro II, etc.)
and accumulative mileage (< 80 000, 80 000–160 000, and
> 160 000 km, because emissions deteriorate as the mileage
increases); EFi,j,k,m is the on-road emission factor of pol-
lutant j of vehicle typek and IVE categorym in county
i; EFIVE

j,k,m is the emission factors simulated by IVE;ηi,j,k

is the local meteorological correction factor, which reflects
the effect of local meteorology on vehicle emissions;ϕj,k is
the emission correction factor, which takes into account the
difference between the base emission factors embedded in
IVE model and the real base emission factors in China and
BEFIVE

j,k,m represents the base emission factors of the vehicle
categoryk measured at an altitude of 500 feet, a temperature
of 75◦F, relative humidity of 60 % and under the US Federal
Test Procedure (FTP) driving cycle. BEFs are built into the
IVE model; Kj,k represents driving pattern correction fac-
tors, which are simulated in the IVE model using driving bin
distributions (Davis et al., 2005).

The main parameters include local driving patterns (to cal-
culateK in IVE), local meteorological correction factors (η),
and correction factors (ϕ), as shown by Eq. (10).

Local driving patterns were obtained from surveys that we
conducted in several Chinese cities, details of the data col-
lection techniques are presented in our previous work (Liu et
al., 2007; Yao et al., 2007; Wang et al., 2008). We used the
same driving patterns for all counties.

Local meteorological parameters include atmospheric
pressure, temperature and humidity, which can significantly
affect emission levels (Bishop et al., 2001; Nam et al.,
2008; Weilenmann et al., 2009). To use the most recent re-
search findings, we applied the US Environmental Protec-
tion Agency’s latest model, MOVES (MOtor Vehicle Emis-
sion Simulator), to generate monthly county-specific mete-
orological correction factors (η), in which county-level al-
titude was obtained from the MODIS (moderate resolution
imaging spectroradiometer) land use map (Schneider et al.,
2009) and county-level monthly mean temperature and hu-
midity from the aggregation of the WRF model v3.3.1 output
at 36 km horizontal resolution.

Correction factors (ϕ) were included because the base
emission factors embedded in IVE may not be able to re-
flect real emission levels in China. The correction factorϕ

is the ratio of measured emission factors to modeled emis-
sion factors from the IVE model using the same parame-
ters (driving patterns, meteorological parameters and accu-
mulated mileage) as the measurement conditions. Measured
emission factors are collected in 12 Chinese cites using the
portable emissions measurement system (PEMS) during the
past ten years (Wang et al., 2005; Yao et al., 2007, 2011; Liu
et al., 2009; Huo et al., 2012a, b). Correction factor was set
as 1 for the vehicle types when local measurements are not

www.atmos-chem-phys.net/14/9787/2014/ Atmos. Chem. Phys., 14, 9787–9805, 2014



9792 B. Zheng et al.: High-resolution mapping of vehicle emissions in China in 2008

Figure 2. Comparison between measured emission factors for
HDTs in China, IVE modeled emission factors and base emission
factors in IVE model; and correction factors of HDTs for(a) CO,
(b) NMHC, (c) NOx and(d) PM2.5.

available. Correction factors remained the same across coun-
ties. As an example, Fig. 2 presented the correction factor
used for HDTs and compared measured emission factors for
HDTs in China (Huo et al., 2012b), IVE modeled emission
factors under the same condition, and base emission factors
in IVE model. The ratio between measured emission factors
and modeled emissions factors represents the differences be-
tween base emission factors in IVE and in China, given the
fact that the “real” base emission factors for Chinese fleet are
unknown.

2.5 Spatial allocation

The spatial allocation of vehicle emissions was processed
in two steps. First, we used the VKT allocation weights on
different types of roads (highway, national, provincial and
county roads) to split vehicle activity. Second, we divided the
county-level emissions according to road type, then plotted
the results onto 0.05◦ × 0.05◦ grids based on road density for
hot-stabilized emissions and urban population distributions
for start and evaporation emissions.

The truck VKT allocation weights were obtained from a
survey conducted in Beijing and Shandong using GPS de-
vices with data acquired over 278 h. The results are presented
in Table 1. Heavy duty trucks run more frequently on inter-
county (including highways, national and provincial roads)
than on county roads, because they are generally used for
long-distance transportation. For passenger vehicles, we as-
sumed that they are used more often in urban than in non-

urban areas, given that the major purpose of passenger ve-
hicles is to meet people’s routine travel needs. Because the
VKT survey data of passenger vehicles were absent, we as-
sumed that 80 % of passenger vehicle VKT were driven on
county roads and the remaining 20 % on inter-county roads,
based on previous estimates (Tuia et al., 2007). To investi-
gate the effect of these VKT weight assumptions on gridded
emissions, we performed a sensitivity analysis with different
weighting factors (presented in Sect. 4.2).

We assumed that all use of passenger vehicles occurred
within the city boundary and the use of trucks within the
province boundary. This assumption for trucks may have
introduced errors because a proportion of trucks travel be-
tween provinces. Unfortunately, the number of trucks used
for inter-province transportation is unknown. This issue can
be addressed once such traffic flow data become available in
China.

Table 2 presented VKT data for different types of vehicles,
which is derived from the fuel economy and environmental
impact (FEEI) model by assuming that VKT will decline as
a vehicle ages and that the VKT of new vehicles varies with
the model year (Huo et al., 2012c). VKT remains the same
across counties.

Hot-stabilized, start, and evaporative emissions were as-
signed onto grids by different allocation approaches. Hot-
stabilized emissions that were split into highway, na-
tional, provincial and county roads were allocated onto
0.05◦ × 0.05◦ grids based on road density. We used the China
Digital Road-network Map (CDRM) data, a set of new road
network data developed in 2010 by National Administration
of Surveying, Mapping and Geoinformation of China, in-
stead of the DCW data (Digital Chart of the World), which
has been widely applied in previous work (Streets et al.,
2003; Ohara et al., 2007; Zhang et al., 2009). The CDRM
data is better at representing the road network in urban areas
than the DCW data, because it includes more detailed city
roads. Start and evaporation emissions were allocated based
on the urban population density (ORNL, 2006) given that
most vehicle journeys start at parking lots that are close to
where people live and work.

3 Results

3.1 County-level vehicle activity

The spatial distribution of vehicle population represented by
county in 2008 is shown in Fig. 3. We observed significant
spatial differences in vehicle population and ownership be-
tween the counties. Developed cities, such as provincial cap-
itals, industrial and coastal cities, had higher vehicle numbers
than less developed cities. For example, counties in the three
most economically developed regions – North China Plain
(NCP), Yangtze River delta (YRD) and Pearl River delta
(PRD) – had 100 to 200 vehicles per 1000 people in 2008,
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Figure 3.County-level vehicle population and vehicle ownership in
2008:(a) vehicle ownership (vehicles/1000 people) and(b) vehicle
population (1000 units).

whereas the median value in other counties was 23 and 84 %
of them had a vehicle ownership level lower than 55 vehicles
per 1000 people.

The economic development level affects vehicle owner-
ship significantly. The large difference between counties sug-
gests that they are at different stages of economic growth.
Counties in developed regions (e.g., NCP, YRD and PRD)
had already entered into the fast growth period, the second
growth phase of the Gompertz function, while most other
counties had just begun the fast growth phase and thus had a
much lower vehicle ownership.

Figure 4 compares the simulated and statistical vehicle
population for 665 counties and 311 cities for which statis-
tics were available. As shown in the figure, the simulated ve-
hicle population shows good agreement with the statistical
data with anR2 greater than 0.9. Note that the method we
established to estimate county-level vehicle ownership is less
accurate for counties with small vehicle populations, because
the number of required vehicles in a country (those used to
maintain the basic functioning of society) is not strongly re-
lated to economic growth and thus cannot be simulated by the
Gompertz function. A large vehicle ownership can reduce the
influence of this proportion of vehicles, but for counties with
a low vehicle population, the basic need for vehicles accounts

Table 2. National average vehicle kilometers traveled (VKT) in
2008.

Category HDB MDB LDB, HDT MDT LDT,
MB MT

VKT 90 90 15 80 60 30
(103 km)

for a significant share and can therefore reduce the accuracy
of the calculation.

3.2 Technology distributions at provincial level

Vehicle technology distribution differs significantly between
regions, as shown by Fig. 5a. Provinces where emission stan-
dards were implemented 1–3 years earlier than the country
(e.g., Beijing and Shanghai) tended to have a more techno-
logically advanced fleet. For provinces with the same stan-
dard implementation schedule, a larger new vehicle fleet may
lead to a smaller share of old vehicles in the future. As shown
in Fig. 5b, provinces with higher vehicle growth rates tended
to have a lower fraction of pre-Euro 1 vehicles. For exam-
ple, vehicle numbers grew fastest in Zhejiang, which had
12 % pre-Euro 1 vehicles, and slowest in Xinjiang with 31 %
pre-Euro 1 vehicles. Because the emission factors of vehi-
cles compliant with different standards can vary significantly
(e.g., CO, NMHC and NOx emission factors of pre-Euro 1
gasoline LDBs are 15, 40 and 8 times those of their Euro 3
counterparts, respectively) (Huo et al., 2012a), the assump-
tion generally made in previous studies that all provinces
(except Beijing and Shanghai) had the same vehicle tech-
nology distribution as the national average (Streets et al.,
2003; Zhang et al., 2009; Huo et al., 2011) may have involved
considerable uncertainties. Therefore, estimating technology
distribution at provincial level will improve the accuracy of
vehicle emission inventories significantly.

As shown in Fig. 5b, shares of pre-Euro 1 vehicles of the
provinces were inversely related to their vehicle growth rates,
but Shanghai is an outlier point. With a vehicle growth rate
of only 13 %, Shanghai had a low share of pre-Euro 1 ve-
hicles equivalent to that of the provinces that have a vehicle
growth rate of 23 %. The main reason for this is that old ve-
hicles in Shanghai are scrapped at a much faster rate than
in other provinces. As Fig. 6 shows, of the 261 counties ex-
amined, Shanghai counties had the greatest differences be-
tween the number of newly registered vehicles and the net
vehicle increase (9 % in Shanghai versus 2 % on average in
other counties). The fast vehicle scrapping in Shanghai is at-
tributable to its license plate auction policy, which began in
1994 and limits the number of new license plates available
each year, making new license plates expensive. As the per-
capita GDP grows in Shanghai, people will have the capabil-
ity to purchase better cars, however, because of the license
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Figure 4. Comparison of the simulated and statistical vehicle population for(a) 665 counties and(b) 311 cities.

Figure 5. Relationship between vehicle technology distribution and vehicle growth rates:(a) technology distribution for each province in
2008 (provinces are ranked in order of annual vehicle growth rate from low to high, Beijing and Shanghai are highlighted because they
implemented vehicle emission standards ahead of the country);(b) shares of pre-Euro 1 vehicles versus vehicle growth rates of 31 provinces.
The growth rate is defined as the average growth rate between 2002 and 2010.

plate policy, they will have to scrap their old cars before they
are able to purchase new ones.

Figure 7 evaluates the back-calculation method by com-
paring the simulated new vehicle results with statistical
records from 2002 to 2010 for 30 provinces (270 data points
in total, the Hebei Province is not included because of ir-
regularities in the data). As can be seen from Fig. 7, the
simulated results showed good agreement with the statistical
records, especially for passenger vehicles (R2

= 0.98). This
indicates that the technology distribution calculated in this
study is reliable, and the vehicle survival functions chosen
for the provinces can accurately depict the vehicle scrapping
patterns.

3.3 Meteorological correction factors (η)

The seasonal meteorological correction factors for NMHC
and CO in light-duty gasoline buses (LDB-G), and for
NOx in heavy-duty diesel trucks (HDT-D) are shown in
Fig. 8. LDB-G and HDT-D were selected as examples be-
cause they are the largest contributors to total on-road emis-
sions of NMHC, CO and NOx. In general, NMHC and
CO running emissions increased as the temperature in-
creased. Conversely, NOx running and start emissions in-
creased as the temperature decreased. In addition, start emis-
sions were more sensitive to environmental temperature be-
cause, when starting the vehicle, the catalytic converters need
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Figure 6. Correlation between newly registered vehicles and vehi-
cle population growth from 2002 to 2010.

longer/shorter time to reach the working temperature in a
colder/warmer climate. For example, from summer (July) to
winter (January), the NOx start emission factors for HDT-D
increased by 5–20 times while the NOx running emissions
increased by only 1.1–1.3 times.

The spatial distribution of the correction factors for CO
emissions of LDB-G are presented in Fig. 9. The correction
factors varied considerably between northern and southern
regions, because the regions differed significantly in tem-
perature. In July, the CO running emission factors in the
southern regions were approximately 30 % higher than in
the northern regions; while in January, the north had CO
start emission factors 3.5 times higher than the south. Fig-
ure 9 also reveals the remarkable differences in meteorolog-
ical correction factors between the western and eastern re-
gions, which were caused not only by their different temper-
atures but also by their different altitudes. In general, western
China is at a higher altitude than eastern China (e.g., 1900 m
in Gansu versus 12 m in Jiangsu, which are both located at
similar latitudes). Higher altitudes can result in more incom-
plete combustion products (e.g., CO and NMHC) because of
the low concentration of oxygen in the atmosphere. There-
fore, vehicles operated in the western regions had approxi-
mately 9–20 % higher CO emission factors than those in the
eastern regions under the same temperature.

The analysis of meteorological correction factors suggests
that vehicles with the same control technology may have very
different emission factors in different regions. Therefore, the
regions with weather conditions that increase vehicle emis-
sions should take stricter control measures. The significant
disparity in seasonal and regional correction factors also em-
phasizes the importance and necessity to calculate emission

Figure 7. Comparison of the new vehicles simulated in this work
and newly registered vehicles reported in statistics:(a) passenger
vehicles and(b) trucks.

factors by region in order to improve the spatial and temporal
resolution of the inventory.

3.4 Total vehicle emissions in 2008

The on-road CO, NMHC, NOx and PM2.5 emissions
by vehicle and technology type are summarized in Ta-
ble 3. In 2008, China’s vehicles emitted 16.37 Tg CO,
1.53 Tg NMHC, 4.57 Tg NOx and 0.245 Tg PM2.5. As shown
in Table 3, older vehicles (e.g., pre-Euro 1 and Euro 1 ve-
hicles) contributed significantly to on-road emissions. Pre-
Euro 1 vehicles contributed 24–26 % of CO and NMHC
emissions, but only 13–14 % of NOx and PM2.5 emissions,
and this was because CO and NMHC emission factors de-
creased faster than those for NOx and PM2.5 from pre-Euro 1
to Euro 1 standards. Euro 3 vehicles contributed more signif-
icantly (17 %) to NOx than to other pollutant types, because
the reduction in the real-world NOx emission factors from
Euro 2 to Euro 3 vehicles was very small (Huo et al., 2012b),
and new vehicles tended to be used more often than old
ones. As demand for long-distance transportation is growing
rapidly and heavy duty vehicle numbers are increasing, more
stringent control measures should be taken for heavy-duty
diesel vehicles in order to control on-road NOx emissions.

3.5 Monthly variation of vehicle emissions

Monthly vehicle emissions are plotted in Fig. 10. The total
emissions, as well as the contributions from different pro-
cesses (e.g., running the vehicle, starting and evaporation)
vary significantly between months. During winter months
(Dec to Feb) vehicles produce 19 % more CO, 11 % more
NMHC, and 21 % more NOx emissions than in the summer
(Jun to Aug). The monthly PM2.5 emissions did not vary sig-
nificantly because MOVES assumes that the PM2.5 emission
factors of diesel trucks change very little with temperature.

Hot-stabilized processes accounted for the largest propor-
tion of emissions, with 79 % CO, 80% NMHC, 97 % NOx,
and 87 % PM2.5 emissions in the summer, and 52 % CO,
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Figure 8.Meteorological correction factors of vehicle emissions by month:(a) running CO of gasoline LDBs;(b) running NMHC of gasoline
LDBs; (c) running NOx of diesel HDTs;(d) start CO of gasoline LDBs;(e) start NMHC of gasoline LDBs;(f) start NOx of diesel HDTs.
Each box plot displays the statistics of 2364 counties in China. The upper line of each box represents the 75 %, the middle line the 50 %, and
the lower line the 25 % quartiles.

69 % NMHC, 88 % NOx and 86 % PM2.5 in winter. The share
of CO and NMHC start emissions was much higher in winter
(48 % for CO and 30 % for NMHC), because when the tem-
perature decreased the CO and NMHC start emission factors
increased while their running emission factors decreased.

The monthly variability in vehicle emissions at different
latitudes is shown in Fig. 11. The monthly pattern of vari-
ability of the CO and NMHC emissions differed remarkably
by latitudes due to large contribution from start emissions,
which have strong variability at different latitudes induced by
differences in temperatures. For NOx and PM2.5 emissions,
monthly variability was less dependent on latitudes because
start emissions play a relatively small role in total NOx and
PM2.5 emissions, and running emissions are not as sensitive
to temperatures as start emissions.

3.6 Spatial variation of vehicle emissions

The county and gridded emissions of CO and NOx are de-
picted in Fig. 12. The NMHC and PM2.5 emission maps are

similar to those for CO and NOx, respectively, and they are
therefore not shown.

Vehicle emissions were distributed unevenly throughout
China. The majority of emissions were concentrated in a few
counties. Emission hot-spots could be identified, as shown in
Fig. 12a. The counties shown in red accounted for less than
1 % of the total counties, but contributed approximately 20 %
of the CO emissions in 2008. Most of these counties are the
urban centers of the province capitals, which can be consid-
ered as the most developed areas in China.

Urban areas have the highest vehicle emission levels, in
terms of both total amount and emission intensity (defined
as emissions per unit area). In 2008, urban areas in China
accounted for only 11 % of the total land area and 28 % of
the total population. However, they contributed 42, 39, 32
and 32 % to the total vehicle CO, NMHC, NOx and PM2.5
emissions, respectively. The share of urban NOx and PM2.5
emissions was a little lower because their major contribu-
tors, trucks, run less often in urban areas. On average, the ur-
ban vehicle emission intensity was 2.9–3.8 times the national
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Table 3.Vehicle emissions in China in 2008.

HDB MDB LDB MB HDT MDT LDT MT Share

CO Pre-Euro1 0.21 0.38 1.94 0.69 0.13 0.29 0.18 0.03 24 %
emissions Euro 1 0.21 0.27 2.54 0.57 0.29 0.25 0.62 0.03 29 %
(Tg) Euro 2 0.83 0.99 3.12 0.10 0.26 0.38 0.59 0.01 38 %

Euro 3 0.05 0.01 1.00 0.02 0.10 0.03 0.25 0.00 9 %
Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 %

Total 16.37
Passenger vehicle/truck 79 %, 21 %
Gasoline/diesel 88 %, 12 %

NMHC Pre-Euro1 0.02 0.03 0.19 0.07 0.03 0.03 0.03 0.00 26 %
emissions Euro 1 0.02 0.02 0.21 0.04 0.04 0.03 0.08 0.00 29 %
(Tg) Euro 2 0.11 0.09 0.14 0.00 0.11 0.06 0.09 0.00 40 %

Euro 3 0.01 0.00 0.01 0.00 0.02 0.01 0.03 0.00 5 %
Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 %

Total 1.53
Passenger vehicle/truck 64 %, 36 %
Gasoline/diesel 65 %, 35 %

NOx Pre-Euro1 0.05 0.05 0.08 0.03 0.19 0.11 0.06 0.00 13 %
emissions Euro 1 0.13 0.14 0.04 0.01 0.30 0.26 0.12 0.00 22 %
(Tg) Euro 2 0.39 0.34 0.05 0.00 0.64 0.40 0.36 0.00 48 %

Euro 3 0.14 0.07 0.01 0.00 0.27 0.16 0.15 0.00 17 %
Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 %

Total 4.57
Passenger vehicle/truck 34 %, 66 %
Gasoline/diesel 9 %, 91 %

PM2.5 Pre-Euro1 0.005 0.003 0.000 0.000 0.017 0.007 0.003 0.000 14 %
emissions Euro 1 0.010 0.007 0.001 0.000 0.022 0.014 0.004 0.000 24 %
(Tg) Euro 2 0.030 0.018 0.001 0.000 0.051 0.021 0.011 0.000 54 %

Euro 3 0.005 0.001 0.000 0.000 0.009 0.003 0.001 0.000 8 %
Euro 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 %

Total 0.245
Passenger vehicle/truck 33 %, 67 %
Gasoline/diesel 3 %, 97 %

average. The differences were even more dramatic in devel-
oped areas. Taking Beijing as an example, the six urban dis-
tricts (including Dongcheng, Xicheng, Haidian, Chaoyang,
Fengtai and Shijingshan) accounted for only 8 % of the Bei-
jing surface area, but contributed 53–64 % of the total vehi-
cle emissions for Beijing. The emission intensities of these
six districts were 6.3–7.7 times the average of the entire city.

Beijing, Shanghai, Guangzhou and Tianjin had the high-
est vehicle emissions in China. For example, the vehicle
CO emission intensity was 45, 34, 27 and 17 times higher,
respectively, than the average urban emission intensity for
the country. Beijing, Shanghai and Guangzhou have imple-
mented restriction policies on car purchases to constrain the
excessive vehicle growth, address traffic congestion and re-
duce vehicle emissions. Similar measures are planned for
Tianjin.

Gridded CO and NOx emissions are presented in Fig. 12b
and d. The majority of vehicle emissions were concentrated
in urban areas and on inter-county highways connecting ma-
jor cities. However, the spatial distribution of CO and NOx
emissions had notable differences. CO (NMHC) emissions
were highly concentrated in urban areas, while much of the
NOx (PM2.5) emissions were distributed on highways. This
difference can be attributed to the fact that light-duty vehi-
cles, the major contributor of CO and NMHC, are operated
more frequently on county roads. On the other hand, heavy
duty vehicles (HDBs and HDTs), the major NOx and PM2.5
contributors, are used extensively on inter-county roads.
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Figure 9. Spatial distribution of the meteorological correction fac-
tors for CO emissions of gasoline LDBs by county:(a) running
emissions in January;(b) running emissions in July;(c) start emis-
sions in January and(d) start emissions in July.

Figure 10.Monthly variations of vehicle emissions in 2008:(a)CO;
(b) NMHC; (c) NOx and(d) PM2.5.

4 Evaluation of the spatial allocation method

4.1 Spatial surrogates

Spatial surrogates are important because the extent to which
they can represent the spatial distribution of emissions di-
rectly determines the accuracy of an emission inventory. The
major differences between the spatial proxies used in this
study and those applied in previous studies are (1) VKT
weight factors for different road types were used to allocate
county emissions, which were usually neglected in previous
work (Streets et al., 2003; Ohara et al., 2007; Zhang et al.,
2009), and (2) the new CDRM data was adopted instead of
DCW data.

Figure 11.Share of monthly emissions of the whole year at differ-
ent latitudes. Counties here are located in regions with the altitudes
lower than 1000 m and the longitudes larger than 103◦ E.

To evaluate the improvement provided by the new al-
location method developed in this study, we compared
the new method with three existing allocation methods:
(1) the population-based allocation method (M1), (2) the
road-length-based allocation method using DCW data (M2)
and (3) the road-length-based allocation method using the
CDRM data (M3) to explore the effect of road data quality.
Details on the four methods are provided in Table 4.

The differences in grid vehicle emissions between our
method and the other three methods are illustrated in Fig. 13.
Compared with M1, this study generated higher emissions
for rich counties with small populations, and lower emissions
for less-developed counties with large populations. This is a
more reasonable result than that of M1 where the ratio of
vehicle activities or emissions was assumed to be propor-
tional to population size. As mentioned in Sect. 2.2, vehi-
cle population is determined by both per-capita GDP and to-
tal population. The population-based allocation method (M1)
neglects the effect from per-capita GDP on vehicle own-
ership. More importantly, our work improves the estimates
for super-large counties with a population over 2 million.
Super-large cities are usually the most industrialized and
developed cities in China (e.g., megacities, provincial cap-
itals and coastal cities) and have much higher percentage
of vehicle ownership than the national average, and there-
fore the population-based method could underestimate their
emissions. As shown in Fig. 13b and c, the road-length-based
methods (M2 and M3) significantly underestimated the emis-
sions for counties with high population or per-capita GDP,
and thus failed to identify emission hotspots. When com-
pared with the method developed in this study, the relative
differences in M3 were smaller than those in M2 because
the new CDRM data has more detailed information on ur-
ban roads that can improve spatial allocation in urban areas.
However, the underestimation of emissions for urban areas is
not addressed completely.

The comparison of gridded emissions at different spatial
resolutions is presented in Fig. 14; as shown in the figure,
because the population-based method (M1) treats vehicle
emissions as area sources, it failed to depict their spatial
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Table 4.Description of the four emission allocation methods.

Method Description

Method developed Emissions by county are allocated into grids based on the China Digital
in this work Road-network Map (CDRM) and the traffic weights of different road types.

Method 1 (M1) Provincial emissions∗ are allocated into grids based on population (ORNL, 2006).

Method 2 (M2) Provincial emissions∗ are allocated into grids based on Digital Chart of the World
(DCW) road network data.

Method 3 (M3) Provincial emissions∗ are allocated into grids based on the CDRM data.

∗ Provincial emissions are obtained through aggregating the county-level emissions calculated in this study.

Figure 12. County and gridded emissions in 2008:(a) CO emissions by county (bar A represents the share of county numbers; bar B
represents the share of county emissions);(b) gridded CO emissions at 0.05◦

× 0.05◦ resolution;(c) NOx emissions by county and(d)
gridded NOx emissions at 0.05◦ × 0.05◦ resolution.

characteristics as line sources. M2 was not able to identify
emission hotspots in big cities, because city roads are not
included in DCW and few emissions could be allocated to
urban areas. M3 could identify emission hotspots in cities
but had less emissions allocated to major roads (e.g., inter-
county highways) compared with our new method. The road-
length-based method assumed a proportional relationship be-
tween emissions and the road length regardless the road type.
As a result, major roads that carry a higher traffic load than
smaller roads were allocated less emissions than they should
have been. The allocation method developed in this work was

able to reflect the characteristics of vehicle emissions as line
sources and could identify emission hotspots in cities, be-
cause of improvements in three aspects: (1) emissions are
estimated at county level, (2) detailed road network data was
used and (3) spatial distribution features of traffic activities
were taken into consideration.

As the grid resolution became coarser, differences between
the four methods became less significant because the spatial
surrogates tended to have similar spatial distribution charac-
teristics at a large spatial scale. As Fig. 14 shows, when the
grid resolution was 0.5◦, which is greater than most counties
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Figure 13.Distribution of the relative difference (RD) in gridded NMHC emissions at a resolution of 0.05◦
× 0.05◦ between this work and

other methods, and their relationships with county population and per-capita GDP:(a) this work versus M1;(b) this work versus M2 and
(c) this work versus M3. RD is defined as RDi = (E1i − E2i)/((E1i + E2i)/2), wherei represents county, E1 and E2 represent emissions
by county generated from this study and other allocation methods (M1, M2, or M3). A positive (or negative) RD means that our method
generates higher (or lower) emissions for this county than the other method.

in eastern China, the spatial distributions generated from the
four methods had similar characteristics.

Figure 15 further explores the differences in gridded emis-
sions between the methods at different resolutions. Gridded
emissions became sensitive to spatial proxies when grid size
is less than 0.2◦, indicating that the accuracy of urban scaling
modeling would be significantly impacted by spatial prox-
ies used in bottom-up emissions. It is suggested that gridded
emissions obtained from M1 is closer to this work than M2
for large urban areas at fine resolution (e.g., 0.05◦, Fig. 15b
and c). This is because using population as spatial proxy
tends to allocate more emissions in urban area, while M2
was not able to identify emission hotspots in big cities as city
roads are not included in DCW and few emissions could be
allocated to urban areas. Using DCW as spatial proxy may
introduce substantial underestimation of emissions in urban
areas.

If the grid size was increased, the differences in the overall
gridded emissions between the three methods were reduced.
However, as Fig. 15d and e shows, both M1 and M2 meth-
ods may significantly underestimate the emissions of some
grids with large populations (e.g., grids that cover Beijing,
PRD and YRD), even though the grid size was enlarged to
1.0◦ (equivalent to 100 km× 100 km). These highly popu-
lated regions are usually the key objective and focus of air
quality modeling studies. Therefore, the allocation method
developed in this study can provide better accuracy at both
high and low resolution.

4.2 VKT allocation weights

We introduced the concept of VKT allocation weights to im-
prove the accuracy of the gridded emission inventory. How-
ever, due to a lack of sufficient traffic survey data, the as-
sumptions that we made for VKT weights may have created
uncertainties in the gridded emission results. Therefore, we
conducted a sensitivity analysis to quantify the sensitivity of
the gridded emissions to the VKT allocation weights. Two
scenarios (denoted as S1 and S2) were designed to represent
the extreme values of VKT allocation weights for passenger
vehicles and trucks, respectively, as shown in Table 5.

The results of the sensitivity analysis for NMHC and NOx
emissions are presented in Fig. 16. As the CO result was sim-
ilar to that of NMHC, and the PM2.5 result to that of NOx,
this data is therefore not shown. As can be seen in Fig. 16a
and b, on average, the difference in gridded emissions be-
tween this work and S1 ranged from−1 to 7 %, which sug-
gests that the overall results were not very sensitive to the
VKT weights of passenger vehicles. For each individual grid,
the sensitivity of the emissions was dependent on the grid
length ratio of county to inter-county roads (C/ I road ratio).
If a grid had the same C/ I road ratio with the county where
the grid was located, the emissions of this grid had zero sensi-
tivity to the VKT weights of passenger vehicles. The greater
the difference in the C/ I road ratios between a grid and its
county, the more sensitive the gridded emissions were to the
VKT weights. As shown in Fig. 16, compared with S1, this
work allocated greater emissions to a few highly populated
grids, because grids with a high population were more likely
to have a higher C/ I road ratio than the county average. For
a similar reason, this work allocated lower emissions than
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Table 5.Sensitivity analysis scenarios of vehicle kilometers traveled (VKT) allocation weights.

Scenarios Description

Base scenario The VKT distribution weights for passenger vehicles and trucks are shown
(This work) in Table 1.

Scenario 1 (S1) Same as the Base scenario, except that 50 % VKT of passenger vehicles are
allocated to county roads and 50 % VKT to inter-county roads, which assumes the
same VKT for county and inter-county roads. Because passenger vehicles travel
more often in urban areas, S1 represents an extreme case for passenger vehicles.

Scenario 2 (S2) Same as the Base scenario, except that the VKT weights of trucks on county roads
and inter-county roads are 63 % and 37 %, respectively, the same as the length
ratios of these two types of road in China∗. Because trucks are driven more
intensively on inter-county roads than on county roads, assuming the same VKT
per unit of road length for county and inter-county roads can be regarded as an extreme
case for trucks.

∗ In China, county roads made up 63 % and inter-county roads 37 % of the total road length, according to the CDRM.

Figure 14.Vehicle NMHC emissions from different spatial allocation methods:(a) this work;(b) population-based method (M1);(c) DCW-
based method (M2) and(d) CDRM-based method (M3).

S1 for some grids with low populations. If a grid had 100 %
county roads and no inter-county roads, and its county had a
C/ I road ratio of 1.7 (the national average in China), which
is an extreme and rare case, the change of the VKT weights
for county roads from 80 to 50 % could cause a maximal re-
duction of 60 % in the gridded emissions of passenger vehi-

cles. Under a normal scenario, the emission change would
have been much smaller.

As Fig. 16c and d shows, the sensitivity of emissions to
the VKT weights of trucks was small, given that the aver-
age difference in the gridded NMHC and NOx emissions be-
tween this work and S2 ranged from−2 to 2 %. Furthermore,
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Figure 15. Comparison of the gridded emissions with different allocation methods:(a) average differences of gridded emissions between
M1, M2 and this work at various resolutions;(b) this work versus M1 at a resolution of 0.05◦

× 0.05◦; (c) this work versus M2 at a resolution
of 0.05◦ × 0.05◦; (d) this work versus M1 at a resolution of 1.0◦

× 1.0◦ and(e) this work versus M2 at a resolution of 1.0◦
× 1.0◦.

for individual grids, the sensitivity of emissions to the VKT
weight of trucks was related to the grid C/ I road ratio, as
was the case with the VKT weights of passenger vehicles. In-
creasing the VKT weights of trucks from 8–25 % (this work)
to 63 % (S2) allocated more truck emissions to highly pop-
ulated grids because these grids tended to have higher C/ I
road ratios, and vice versa for grids with low populations.
However, as shown by Fig. 16c, the NMHC emissions of
highly populated grids were observed to have little sensi-
tivity to VKT weights of trucks, because passenger vehicles
usually dominated the NMHC emissions in highly populated
grids and trucks played only a very limited role.

5 Discussion

This work proposes a new inventory methodology to improve
the spatial and temporal accuracy and resolution of vehicle
emissions for China. By developing a set of approaches to
estimate, for the first time, the vehicle emissions for each
county, and introducing the VKT allocation weights to as-
sign county emissions into grids, our proposed methodology

overcomes the common weakness of previous methods, such
as, neglecting the geographical differences in crucial parame-
ters of vehicle emissions and using surrogates that are weakly
related to vehicle activities to allocate vehicle emissions.

Compared with previous methods, the new methodology
has great advantages in portraying the spatial distribution
characteristics of vehicle activities and emissions. However,
uncertainties still exist in two aspects – vehicle emission fac-
tors and vehicle activities. In this work, vehicle emission fac-
tors were simulated by a US IVE model that was adjusted
with hundreds of on-road vehicle emission measurements
in China. The uncertainty in these emission factors lies in
the representativeness of the selected measured vehicles. To
lower this uncertainty, more measurements are required and
eventually a vehicle emission model needs to be developed
for China. This work did not include the spatial variations
in emission factors induced by driving conditions due to the
limitation of data availability. The national average driving
patterns are used in this work, which are calculated on the
basis of measurements in about 20 cities in China (Wang
et al., 2008). A sensitivity analysis on CO emission factors
of LDBs for Beijing and Changchun (one megacity with
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Figure 16. Comparison of gridded emissions at a resolution of 0.05◦
× 0.05◦ between this work and the two sensitivity cases (S1 and S2):

(a) gridded NMHC emissions of this work versus S1;(b) gridded NOx emissions of this work versus S1;(c) gridded NMHC emissions of
this work versus S2 and(d) gridded NOx emissions of this work versus S2.

frequent traffic congestions and one midsize city with less
traffic congestions) found that using locally driven cycles
will lead to 6 % increase of CO emission factor in Beijing
and 18 % decrease in Changchun comparing with national
average driving cycles. On the other hand, the vehicle ac-
tivities are determined based on surveys conducted in a few
cities and on several assumptions, which could involve un-
certainties because of the disparity in vehicle activities be-
tween cities. To improve the data quality, dynamic traffic
flow should be integrated into the inventory, which will re-
quire collaboration with traffic management research groups.

Addressing these uncertainties requires long-term efforts
from the research community and concrete support from var-
ious governmental sectors for data availability and sharing.
In the meantime, we will continue to improve the methodol-
ogy by addressing the remaining key issues, including VKT
by county, different technology distributions within the same
province, base emission factors by road type, and more reli-
able VKT weights. We also plan to extend this methodology
from 2008 onwards to perform a multi-year analysis.

The Supplement related to this article is available online
at doi:10.5194/acp-14-9787-2014-supplement.
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